Do you want to publish a course? Click here

Confined Dense Circumstellar Material Surrounding a Regular Type II Supernova: The Unique Flash-Spectroscopy Event of SN 2013fs

282   0   0.0 ( 0 )
 Added by Ofer Yaron
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

With the advent of new wide-field, high-cadence optical transient surveys, our understanding of the diversity of core-collapse supernovae has grown tremendously in the last decade. However, the pre-supernova evolution of massive stars, that sets the physical backdrop to these violent events, is theoretically not well understood and difficult to probe observationally. Here we report the discovery of the supernova iPTF13dqy = SN 2013fs, a mere ~3 hr after explosion. Our rapid follow-up observations, which include multiwavelength photometry and extremely early (beginning at ~6 hr post-explosion) spectra, map the distribution of material in the immediate environment (<~ 10^15 cm) of the exploding star and establish that it was surrounded by circumstellar material (CSM) that was ejected during the final ~1 yr prior to explosion at a high rate, around 10^-3 solar masses per year. The complete disappearance of flash-ionised emission lines within the first several days requires that the dense CSM be confined to within <~ 10^15 cm, consistent with radio non-detections at 70--100 days. The observations indicate that iPTF13dqy was a regular Type II SN; thus, the finding that the probable red supergiant (RSG) progenitor of this common explosion ejected material at a highly elevated rate just prior to its demise suggests that pre-supernova instabilities may be common among exploding massive stars.



rate research

Read More

217 - N. N. Chugai 2020
The recent study of SN 2013fs flash spectrum suggests enormous for SN IIP explosion energy, far beyond possibilities of the neutrino mechanism. The issue of the explosion energy of SN 2013fs is revisited making use of effects of the early supernova interaction with the dense circumstellar shell. The velocity of the cold dense shell between reverse and forward shocks is inferred from the analysis of the broad heii,4686,AA on day 2.4. This velocity alongside with other observables provide us with an alternative energy estimate of $sim1.8times10^{51}$,erg for the preferred mass of $sim10$msun. The inferred value is within the range of the neutrino driven explosion.
106 - D. Khazov , O. Yaron , A. Gal-Yam 2015
Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra ($leq 10$ days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra (flash spectroscopy), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. Searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 Type II SNe showing flash-ionized (FI) signatures in their first spectra. All are younger than 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe~II observed at ages $<5$ days, thereby setting lower limits on the fraction of FI events. We classified as blue/featureless (BF) those events having a first spectrum which is similar to that of a black body, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude $M_R=-18.2$ belong to the FI or BF groups, and that all FI events peaked above $M_R=-17.6$ mag, significantly brighter than average SNe~II.
We present optical and ultraviolet photometry, as well as optical spectra, for the type II supernova (SN) 2015bf. Our observations cover the phases from $sim 2$ to $sim 200$ d after explosion. The first spectrum is characterised by a blue continuum with a blackbody temperature of $sim 24,000$K and flash-ionised emission lines. After about one week, the spectra of SN 2015bf evolve like those of a regular SN II. From the luminosity of the narrow emission component of H$alpha$, we deduce that the mass-loss rate is larger than $sim 3.7times10^{-3},{rm M_odot,yr^{-1}}$. The disappearance of the flash features in the first week after explosion indicates that the circumstellar material is confined within $sim 6 times 10^{14}$ cm. Thus, we suggest that the progenitor of SN 2015bf experienced violent mass loss shortly before the supernova explosion. The multiband light curves show that SN 2015bf has a high peak luminosity with an absolute visual magnitude $M_V = -18.11 pm 0.08$ mag and a fast post-peak decline with a $V$-band decay of $1.22 pm 0.09$ mag within $sim 50$ d after maximum light. Moreover, the $R$-band tail luminosity of SN 2015bf is fainter than that of SNe~II with similar peak by 1--2 mag, suggesting a small amount of ${rm ^{56}Ni}$ ($sim 0.009,{rm M_odot}$) synthesised during the explosion. Such a low nickel mass indicates that the progenitor of SN 2015bf could be a super-asymptotic-giant-branch star that collapsed owing to electron capture.
88 - C. D. Bochenek 2017
X-ray emission is one of the signposts of circumstellar interaction in supernovae (SNe), but until now, it has been observed only in core-collapse SNe. The level of thermal X-ray emission is a direct measure of the density of the circumstellar medium (CSM), and the absence of X-ray emission from Type Ia SNe has been interpreted as a sign of a very low density CSM. In this paper, we report late-time (500--800 days after discovery) X-ray detections of SN 2012ca in {it Chandra} data. The presence of hydrogen in the initial spectrum led to a classification of Type Ia-CSM, ostensibly making it the first SN~Ia detected with X-rays. Our analysis of the X-ray data favors an asymmetric medium, with a high-density component which supplies the X-ray emission. The data suggest a number density $> 10^8$ cm$^{-3}$ in the higher-density medium, which is consistent with the large observed Balmer decrement if it arises from collisional excitation. This is high compared to most core-collapse SNe, but it may be consistent with densities suggested for some Type IIn or superluminous SNe. If SN 2012ca is a thermonuclear SN, the large CSM density could imply clumps in the wind, or a dense torus or disk, consistent with the single-degenerate channel. A remote possibility for a core-degenerate channel involves a white dwarf merging with the degenerate core of an asymptotic giant branch star shortly before the explosion, leading to a common envelope around the SN.
We present photometric and spectroscopic observations of the type Ibn supernova (SN) 2019uo, the second ever SN Ibn with flash ionization (He II, C III, N III) features in its early spectra. SN 2019uo displays a rapid post-peak luminosity decline of 0.1 mag d$^{-1}$ similar to most of the SNe Ibn, but is fainter ($M^V_{max} = -18.30 pm 0.24$ mag) than a typical SN Ibn and shows a color evolution that places it between SNe Ib and the most extreme SNe Ibn. SN 2019uo shows P-cygni He I features in the early spectra which gradually evolves and becomes emission dominated post peak. It also shows faster evolution in line velocities as compared to most other members of the type Ibn subclass. The bolometric light curve is fairly described by a $^{56}$Ni + circumstellar interaction model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا