Do you want to publish a course? Click here

Differential Dynamic Programming for time-delayed systems

58   0   0.0 ( 0 )
 Added by David D. Fan
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Trajectory optimization considers the problem of deciding how to control a dynamical system to move along a trajectory which minimizes some cost function. Differential Dynamic Programming (DDP) is an optimal control method which utilizes a second-order approximation of the problem to find the control. It is fast enough to allow real-time control and has been shown to work well for trajectory optimization in robotic systems. Here we extend classic DDP to systems with multiple time-delays in the state. Being able to find optimal trajectories for time-delayed systems with DDP opens up the possibility to use richer models for system identification and control, including recurrent neural networks with multiple timesteps in the state. We demonstrate the algorithm on a two-tank continuous stirred tank reactor. We also demonstrate the algorithm on a recurrent neural network trained to model an inverted pendulum with position information only.



rate research

Read More

A classic reachability problem for safety of dynamic systems is to compute the set of initial states from which the state trajectory is guaranteed to stay inside a given constraint set over a given time horizon. In this paper, we leverage existing theory of reachability analysis and risk measures to devise a risk-sensitive reachability approach for safety of stochastic dynamic systems under non-adversarial disturbances over a finite time horizon. Specifically, we first introduce the notion of a risk-sensitive safe set as a set of initial states from which the risk of large constraint violations can be reduced to a required level via a control policy, where risk is quantified using the Conditional Value-at-Risk (CVaR) measure. Second, we show how the computation of a risk-sensitive safe set can be reduced to the solution to a Markov Decision Process (MDP), where cost is assessed according to CVaR. Third, leveraging this reduction, we devise a tractable algorithm to approximate a risk-sensitive safe set, and provide theoretical arguments about its correctness. Finally, we present a realistic example inspired from stormwater catchment design to demonstrate the utility of risk-sensitive reachability analysis. In particular, our approach allows a practitioner to tune the level of risk sensitivity from worst-case (which is typical for Hamilton-Jacobi reachability analysis) to risk-neutral (which is the case for stochastic reachability analysis).
Interpretation of Deep Neural Networks (DNNs) training as an optimal control problem with nonlinear dynamical systems has received considerable attention recently, yet the algorithmic development remains relatively limited. In this work, we make an attempt along this line by reformulating the training procedure from the trajectory optimization perspective. We first show that most widely-used algorithms for training DNNs can be linked to the Differential Dynamic Programming (DDP), a celebrated second-order method rooted in the Approximate Dynamic Programming. In this vein, we propose a new class of optimizer, DDP Neural Optimizer (DDPNOpt), for training feedforward and convolution networks. DDPNOpt features layer-wise feedback policies which improve convergence and reduce sensitivity to hyper-parameter over existing methods. It outperforms other optimal-control inspired training methods in both convergence and complexity, and is competitive against state-of-the-art first and second order methods. We also observe DDPNOpt has surprising benefit in preventing gradient vanishing. Our work opens up new avenues for principled algorithmic design built upon the optimal control theory.
A common strategy today to generate efficient locomotion movements is to split the problem into two consecutive steps: the first one generates the contact sequence together with the centroidal trajectory, while the second one computes the whole-body trajectory that follows the centroidal pattern. Yet the second step is generally handled by a simple program such as an inverse kinematics solver. In contrast, we propose to compute the whole-body trajectory by using a local optimal control solver, namely Differential Dynamic Programming (DDP). Our method produces more efficient motions, with lower forces and smaller impacts, by exploiting the Angular Momentum (AM). With this aim, we propose an original DDP formulation exploiting the Karush-Kuhn-Tucker constraint of the rigid contact model. We experimentally show the importance of this approach by executing large steps walking on the real HRP-2 robot, and by solving the problem of attitude control under the absence of external forces.
We consider the optimal control problem of a general nonlinear spatio-temporal system described by Partial Differential Equations (PDEs). Theory and algorithms for control of spatio-temporal systems are of rising interest among the automatic control community and exhibit numerous challenging characteristic from a control standpoint. Recent methods focus on finite-dimensional optimization techniques of a discretized finite dimensional ODE approximation of the infinite dimensional PDE system. In this paper, we derive a differential dynamic programming (DDP) framework for distributed and boundary control of spatio-temporal systems in infinite dimensions that is shown to generalize both the spatio-temporal LQR solution, and modern finite dimensional DDP frameworks. We analyze the convergence behavior and provide a proof of global convergence for the resulting system of continuous-time forward-backward equations. We explore and develop numerical approaches to handle sensitivities that arise during implementation, and apply the resulting STDDP algorithm to a linear and nonlinear spatio-temporal PDE system. Our framework is derived in infinite dimensional Hilbert spaces, and represents a discretization-agnostic framework for control of nonlinear spatio-temporal PDE systems.
This paper presents a method to reduce the computational complexity of including second-order dynamics sensitivity information into the Differential Dynamic Programming (DDP) trajectory optimization algorithm. A tensor-free approach to DDP is developed where all the necessary derivatives are computed with the same complexity as in the iterative Linear Quadratic Regulator~(iLQR). Compared to linearized models used in iLQR, DDP more accurately represents the dynamics locally, but it is not often used since the second-order derivatives of the dynamics are tensorial and expensive to compute. This work shows how to avoid the need for computing the derivative tensor by instead leveraging reverse-mode accumulation of derivative information to compute a key vector-tensor product directly. We benchmark this approach for trajectory optimization with multi-link manipulators and show that the benefits of DDP can often be included without sacrificing evaluation time, and can be done in fewer iterations than iLQR.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا