Do you want to publish a course? Click here

Manipulating superconductivity of $1T$-TiTe$_2$ by high pressure

221   0   0.0 ( 0 )
 Added by Ruichun Xiao
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Superconductivity of transition metal dichalcogenide $1T$-TiTe$_2$ under high pressure was investigated by the first-principles calculations. Our results show that the superconductivity of $1T$-TiTe$_2$ exhibits very different behavior under the hydrostatic and uniaxial pressure. The hydrostatic pressure is harmful to the superconductivity, while the uniaxial pressure is beneficial to the superconductivity. Superconducting transition temperature $T_C$ at ambient pressure is 0.73 K, and it reduces monotonously under the hydrostatic pressure to 0.32 K at 30 GPa. While the $T_C$ increases dramatically under the uniaxial pressure along $c$ axis. The established $T_C$ of 6.34 K under the uniaxial pressure of 17 GPa, below which the structural stability maintains, is above the liquid helium temperature of 4.2 K. The increase of density of states at Fermi level, the redshift of $F(omega)$/$alpha^2F(omega)$ and the softening of the acoustic modes with pressure are considered as the main reasons that lead to the enhanced superconductivity under uniaxial pressure. In view of the previously predicted topological phase transitions of $1T$-TiTe$_2$ under the uniaxial pressure [Phys. Rev. B 88, 155317 (2013)], we consider $1T$-TiTe$_2$ as a possible candidate in transition metal chalcogenides for exploring topological superconductivity.



rate research

Read More

Topological superconductivity has attracted intensive interest for its ability of hosting Majorana zero mode and implementing in topological quantum computations. Based on the first-principles calculations and the analysis of the effective BdG Hamiltonian, we demonstrate that 1$T$-TiTe$_2$ is a topological metal hosting Dirac cone type of surface states near the Fermi level, and it exhibits a normal-topological-normal superconductivity phase transition as a function of the chemical potential. These results point out a new promising topological superconductor without random dopant, in which the influence of the impurity may be greatly reduced. Furthermore, our calculations also suggest that the transition metal intercalated Ti(Se$_{1-y}$Te$_y$)$_2$ is also a highly possible route to realize TSC and MZMs.
119 - C. Shang , Y. Q. Fang , Q. Zhang 2018
Transition-metal dichalcogenides open novel opportunities for the exploration of exciting new physics and devices. As a representative system, 2H-MoS$_2$ has been extensively investigated owing to its unique band structure with a large band gap, degenerate valleys and non-zero Berry curvature. However, experimental studies of metastable 1T polytypes have been a challenge for a long time, and electronic properties are obscure due to the inaccessibility of single phase without the coexistence of 1T, 1T and 1T lattice structures, which hinder the broad applications of MoS$_2$ in future nanodevices and optoelectronic devices. Using ${K_x(H_2O)_yMoS_2}$ as the precursor, we have successfully obtained high-quality layered crystals of the metastable 1T-MoS$_2$ with $sqrt{3}atimessqrt{3}a$ superstructure and metastable 1T-MoS$_2$ with a$times$2a superstructure, as evidenced by structural characterizations through scanning tunneling microscopy, Raman spectroscopy and X-ray diffraction. It is found that the metastable 1T-MoS$_2$ is a superconductor with onset transition temperature (${T_c}$) of 4.2 K, while the metastable 1 T-MoS$_2$ shows either superconductivity with Tc of 5.3 K or insulating behavior, which strongly depends on the synthesis procedure. Both of the metastable polytypes of MoS$_2$ crystals can be transformed to the stable 2H phase with mild annealing at about 70 $^{circ}$C in He atmosphere. These findings provide pivotal information on the atomic configurations and physical properties of 1T polytypes of MoS$_2$.
173 - Wenhao Liu , Sheng Li , hanlin Wu 2021
Two-dimensional transition metal dichalcogenide PdTe$_2$ recently attracts much attention due to its phase coexistence of type-II Dirac semimetal and type-I superconductivity. Here we report a 67 % enhancement of superconducting transition temperature in the 1T-PdSeTe in comparison to that of PdTe2 through partial substitution of Te atoms by Se. The superconductivity has been unambiguously confirmed by the magnetization, resistivity and specific heat measurements. 1T-PdSeTe shows type-II superconductivity with large anisotropy and non-bulk superconductivity nature with volume fraction ~ 20 % estimated from magnetic and heat capacity measurements. 1T-PdSeTe expands the family of superconducting transition metal dichalcogenides and thus provides additional insights for understanding superconductivity and topological physics in the 1T-PdTe$_2$ system
Superconductivity in the type-II Weyl semimetal candidate MoTe$_2$ has attracted much attention due to the possible realization of topological superconductivity. Under applied pressure, the superconducting transition temperature is significantly enhanced, while the structural transition from the high-temperature 1$T$ phase to the low-temperature $T_d$ phase is suppressed. Hence, applying pressure allows us to investigate the dimensionality of superconductivity in 1$T$-MoTe$_2$. We have performed a detailed study of the magnetotransport properties and upper critical field $H_{c2}$ of MoTe$_2$ under pressure. The magnetoresistance (MR) and Hall coefficient of MoTe$_2$ are found to be decreasing with increasing pressure. In addition, the Kohlers scalings for the MR data above $sim$11 kbar show a change of exponent whereas the data at lower pressure can be well scaled with a single exponent. These results are suggestive of a Fermi surface reconstruction when the structure changes from the $T_d$ to 1$T$ phase. The $H_{c2}$-temperature phase diagram constructed at 15 kbar, with $Hparallel ab$ and $Hperp ab$, can be satisfactorily described by the Werthamer-Helfand-Hohenberg model with the Maki parameters $alpha sim$ 0.77 and 0.45, respectively. The relatively large $alpha$ may stem from a small Fermi surface and a large effective mass of semimetallic MoTe$_2$. The angular dependence of $H_{c2}$ at 15 kbar can be well fitted by the Tinkham model, suggesting the two-dimensional nature of superconductivity in the high-pressure 1$T$ phase.
We investigate the possibility of achieving high-temperature superconductivity in hydrides under pressure by inducing metallization of otherwise insulating phases through doping, a path previously used to render standard semiconductors superconducting at ambient pressure. Following this idea, we study H$_2$O, one of the most abundant and well-studied substances, we identify nitrogen as the most likely and promising substitution/dopant. We show that for realistic levels of doping of a few percent, the phase X of ice becomes superconducting with a critical temperature of about 60 K at 150GPa. In view of the vast number of hydrides that are strongly covalent bonded, but that remain insulating until rather large pressures, our results open a series of new possibilities in the quest for novel high-temperature superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا