No Arabic abstract
Strong external difference family (SEDF) and its generalizations GSEDF, BGSEDF in a finite abelian group $G$ are combinatorial designs raised by Paterson and Stinson [7] in 2016 and have applications in communication theory to construct optimal strong algebraic manipulation detection codes. In this paper we firstly present some general constructions of these combinatorial designs by using difference sets and partial difference sets in $G$. Then, as applications of the general constructions, we construct series of SEDF, GSEDF and BGSEDF in finite fields by using cyclotomic classes.
Tang and Ding [IEEE IT 67 (2021) 244-254] studied the class of narrow-sense BCH codes $mathcal{C}_{(q,q+1,4,1)}$ and their dual codes with $q=2^m$ and established that the codewords of the minimum (or the second minimum) weight in these codes support infinite families of 4-designs or 3-designs. Motivated by this, we further investigate the codewords of the next adjacent weight in such codes and discover more infinite classes of $t$-designs with $t=3,4$. In particular, we prove that the codewords of weight $7$ in $mathcal{C}_{(q,q+1,4,1)}$ support $4$-designs when $m geqslant 5$ is odd and $3$-designs when $m geqslant 4$ is even, which provide infinite classes of simple $t$-designs with new parameters. Another significant class of $t$-designs we produce in this paper has supplementary designs with parameters 4-$(2^{2s+1}+ 1,5,5)$; these designs have the smallest index among all the known simple 4-$(q+1,5,lambda)$ designs derived from codes for prime powers $q$; and they are further proved to be isomorphic to the 4-designs admitting the projective general linear group PGL$(2,2^{2s+1})$ as automorphism group constructed by Alltop in 1969.
One of the main problems in random network coding is to compute good lower and upper bounds on the achievable cardinality of the so-called subspace codes in the projective space $mathcal{P}_q(n)$ for a given minimum distance. The determination of the exact maximum cardinality is a very tough discrete optimization problem involving a huge number of symmetries. Besides some explicit constructions for textit{good} subspace codes several of the most success full constructions involve the solution of discrete optimization subproblems itself, which mostly have not been not been solved systematically. Here we consider the multilevel a.k.a. Echelon--Ferrers construction and given lower and upper bounds for the achievable cardinalities. From a more general point of view, we solve maximum clique problems in weighted graphs, where the weights can be polynomials in the field size $q$.
This paper considers the construction of isodual quasi-cyclic codes. First we prove that two quasi-cyclic codes are permutation equivalent if and only if their constituent codes are equivalent. This gives conditions on the existence of isodual quasi-cyclic codes. Then these conditions are used to obtain isodual quasi-cyclic codes. We also provide a construction for isodual quasi-cyclic codes as the matrix product of isodual codes.
Recently, it was discovered by several authors that a $q$-ary optimal locally recoverable code, i.e., a locally recoverable code archiving the Singleton-type bound, can have length much bigger than $q+1$. This is quite different from the classical $q$-ary MDS codes where it is conjectured that the code length is upper bounded by $q+1$ (or $q+2$ for some special case). This discovery inspired some recent studies on length of an optimal locally recoverable code. It was shown in cite{LXY} that a $q$-ary optimal locally recoverable code is unbounded for $d=3,4$. Soon after, it was proved that a $q$-ary optimal locally recoverable code with distance $d$ and locality $r$ can have length $Omega_{d,r}(q^{1 + 1/lfloor(d-3)/2rfloor})$. Recently, an explicit construction of $q$-ary optimal locally recoverable codes for distance $d=5,6$ was given in cite{J18} and cite{BCGLP}. In this paper, we further investigate construction optimal locally recoverable codes along the line of using parity-check matrices. Inspired by classical Reed-Solomon codes and cite{J18}, we equip parity-check matrices with the Vandermond structure. It is turns out that a parity-check matrix with the Vandermond structure produces an optimal locally recoverable code must obey certain disjoint property for subsets of $mathbb{F}_q$. To our surprise, this disjoint condition is equivalent to a well-studied problem in extremal graph theory. With the help of extremal graph theory, we succeed to improve all of the best known results in cite{GXY} for $dgeq 7$. In addition, for $d=6$, we are able to remove the constraint required in cite{J18} that $q$ is even.
A basic problem for constant dimension codes is to determine the maximum possible size $A_q(n,d;k)$ of a set of $k$-dimensional subspaces in $mathbb{F}_q^n$, called codewords, such that the subspace distance satisfies $d_S(U,W):=2k-2dim(Ucap W)ge d$ for all pairs of different codewords $U$, $W$. Constant dimension codes have applications in e.g. random linear network coding, cryptography, and distributed storage. Bounds for $A_q(n,d;k)$ are the topic of many recent research papers. Providing a general framework we survey many of the latest constructions and show up the potential for further improvements. As examples we give improved constructions for the cases $A_q(10,4;5)$, $A_q(11,4;4)$, $A_q(12,6;6)$, and $A_q(15,4;4)$. We also derive general upper bounds for subcodes arising in those constructions.