Do you want to publish a course? Click here

The Double Galaxy Cluster Abell 2465 III. X-ray and Weak-lensing Observations

219   0   0.0 ( 0 )
 Added by Keiichi Umetsu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report Chandra X-ray observations and optical weak-lensing measurements from Subaru/Suprime-Cam images of the double galaxy cluster Abell 2465 (z=0.245). The X-ray brightness data are fit to a beta-model to obtain the radial gas density profiles of the northeast (NE) and southwest (SW) sub-components, which are seen to differ in structure. We determine core radii, central temperatures, the gas masses within $r_{500c}$, and the total masses for the broader NE and sharper SW components assuming hydrostatic equilibrium. The central entropy of the NE clump is about two times higher than the SW. Along with its structural properties, this suggests that it has undergone merging on its own. The weak-lensing analysis gives virial masses for each substructure, which compare well with earlier dynamical results. The derived outer mass contours of the SW sub-component from weak lensing are more irregular and extended than those of the NE. Although there is a weak enhancement and small offsets between X-ray gas and mass centers from weak lensing, the lack of large amounts of gas between the two sub-clusters indicates that Abell 2465 is in a pre-merger state. A dynamical model that is consistent with the observed cluster data, based on the FLASH program and the radial infall model, is constructed, where the subclusters currently separated by ~1.2Mpc are approaching each other at ~2000km/s and will meet in ~0.4Gyr.



rate research

Read More

We investigate the star formation rate and its location in the major merger cluster Abell 2465 at $z$ = 0.245. Optical properties of the cluster are described in Paper I. Measurements of the H$alpha$ and infrared dust emission of galaxies in the cluster were made with an interference filter centred on the redshifted line at a wavelength of 817 nm and utilized data from the WISE satellite 12 $mu$m band. Imaging in the Johnson $U$ and $B$ bands was obtained, and along with SDSS $u$ and $r$ was used to study the blue fraction, which appears enhanced, as a further signatures of star formation in the cluster. Star formation rates were calculated using standard calibrations. The total star formation rate normalized by the cluster mass, $Sigma SFR/M_{cl}$ compared to compilations for other clusters indicate that the components of Abell 2465 lie above the mean $z$ and $M_{cl}$ relations, suggestive that interacting galaxy clusters have enhanced star formation. The projected radial distribution of the star forming galaxies does not follow a NFW profile and is relatively flat indicating that fewer star forming galaxies are in the cluster centre. The morphologies of the H$alpha$ sources within $R_{200}$ for the cluster as a whole indicate that many are disturbed or merging, suggesting that a combination of merging or harassment is working.
We present Suzaku observations of the galaxy cluster Abell 2029, which exploit Suzakus low particle background to probe the ICM to radii beyond those possible with previous observations (reaching out to the virial radius), and with better azimuthal coverage. We find significant anisotropies in the temperature and entropy profiles, with a region of lower temperature and entropy occurring to the south east, possibly the result of accretion activity in this direction. Away from this cold feature, the thermodynamic properties are consistent with an entropy profile which rises, but less steeply than the predictions of purely gravitational hierarchical structure formation. Excess emission in the northern direction can be explained due to the overlap of the emission from the outskirts of Abell 2029 and nearby Abell 2033 (which is at slightly higher redshift). These observations suggest that the assumptions of spherical symmetry and hydrostatic equilibrium break down in the outskirts of galaxy clusters, which poses challenges for modelling cluster masses at large radii and presents opportunities for studying the formation and accretion history of clusters.
102 - Keiichi Umetsu 2020
Weak gravitational lensing of background galaxies provides a direct probe of the projected matter distribution in and around galaxy clusters. Here we present a self-contained pedagogical review of cluster--galaxy weak lensing, covering a range of topics relevant to its cosmological and astrophysical applications. We begin by reviewing the theoretical foundations of gravitational lensing from first principles, with special attention to the basics and advanced techniques of weak gravitational lensing. We summarize and discuss key findings from recent cluster--galaxy weak-lensing studies on both observational and theoretical grounds, with a focus on cluster mass profiles, the concentration--mass relation, the splashback radius, and implications from extensive mass calibration efforts for cluster cosmology.
Scaling properties of galaxy cluster observables with mass provide central insights into the processes shaping clusters. Calibrating proxies for cluster mass will be crucial to cluster cosmology with upcoming surveys like eROSITA and Euclid. The recent Planck results led to suggestions that X-ray masses might be biased low by $sim!40$ %, more than previously considered. We extend the direct calibration of the weak lensing -- X-ray mass scaling towards lower masses (as low as $1!times!10^{14},mathrm{M}_{odot}$) in a sample representative of the $z!sim!0.4$--$0.5$ population. We investigate the scaling of MMT/Megacam weak lensing (WL) masses for $8$ clusters at $0.39!leq!z!leq!0.80$ as part of the emph{400d} WL programme with hydrostatic textit{Chandra} X-ray masses as well as those based on the proxies, e.g. $Y_{mathrm{X}}!=!T_{mathrm{X}}M_{mathrm{gas}}$. Overall, we find good agreement between WL and X-ray masses, with different mass bias estimators all consistent with zero. Subdividing the sample, we find the high-mass subsample to show no significant mass bias while for the low-mass subsample, there is a bias towards overestimated X-ray masses at the $sim!2sigma$ level for some mass proxies. The overall scatter in the mass-mass scaling relations is surprisingly low. Neither observation can be traced back to the parameter settings in the WL analysis. We do not find evidence for a strong ($sim!40$ %) underestimate in the X-ray masses, as suggested to reconcile Planck cluster counts and cosmological constraints. For high-mass clusters, our measurements are consistent with studies in the literature. The mass dependent bias, significant at $sim!2sigma$, may hint at a physically different cluster population (less relaxed clusters with more substructure and mergers); or it may be due to small number statistics.
Determination of cluster masses is a fundamental tool for cosmology. Comparing mass estimates obtained by different probes allows to understand possible systematic uncertainties. The cluster Abell 315 is an interesting test case, since it has been claimed to be underluminous in X-ray for its mass (determined via kinematics and weak lensing). We have undertaken new spectroscopic observations with the aim of improving the cluster mass estimate, using the distribution of galaxies in projected phase space. We identified cluster members in our new spectroscopic sample. We estimated the cluster mass from the projected phase-space distribution of cluster members using the MAMPOSSt method. In doing this estimate we took into account the presence of substructures that we were able to identify. We identify several cluster substructures. The main two have an overlapping spatial distribution, suggesting a (past or ongoing) collision along the line-of-sight. After accounting for the presence of substructures, the mass estimate of Abell 315 from kinematics is reduced by a factor 4, down to M200=0.8 (-0.4,+0.6) x 10^14 Msun. We also find evidence that the cluster mass concentration is unusually low, c200=r200/r-2 <~ 1. Using our new estimate of c200 we revise the weak lensing mass estimate down to M200=1.8 (-0.9,+1.7) x 10^14 Msun. Our new mass estimates are in agreement with that derived from the cluster X-ray luminosity via a scaling relation, M200=0.9+-0.2 x 10^14 Msun. Abell 315 no longer belongs to the class of X-ray underluminous clusters. Its mass estimate was inflated by the presence of an undetected subcluster in collision with the main cluster. Whether the presence of undetected line-of-sight structures can be a general explanation for all X-ray underluminous clusters remains to be explored using a statistically significant sample.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا