No Arabic abstract
In this paper we describe an unmanned aerial system equipped with a thermal-infrared camera and software pipeline that we have developed to monitor animal populations for conservation purposes. Taking a multi-disciplinary approach to tackle this problem, we use freely available astronomical source detection software and the associated expertise of astronomers, to efficiently and reliably detect humans and animals in aerial thermal-infrared footage. Combining this astronomical detection software with existing machine learning algorithms into a single, automated, end-to-end pipeline, we test the software using aerial video footage taken in a controlled, field-like environment. We demonstrate that the pipeline works reliably and describe how it can be used to estimate the completeness of different observational datasets to objects of a given type as a function of height, observing conditions etc. -- a crucial step in converting video footage to scientifically useful information such as the spatial distribution and density of different animal species. Finally, having demonstrated the potential utility of the system, we describe the steps we are taking to adapt the system for work in the field, in particular systematic monitoring of endangered species at National Parks around the world.
Unmanned Aerial Vehicles (UAV)-based civilian or military applications become more critical to serving civilian and/or military missions. The significantly increased attention on UAV applications also has led to security concerns particularly in the context of networked UAVs. Networked UAVs are vulnerable to malicious attacks over open-air radio space and accordingly, intrusion detection systems (IDSs) have been naturally derived to deal with the vulnerabilities and/or attacks. In this paper, we briefly survey the state-of-the-art IDS mechanisms that deal with vulnerabilities and attacks under networked UAV environments. In particular, we classify the existing IDS mechanisms according to information gathering sources, deployment strategies, detection methods, detection states, IDS acknowledgment, and intrusion types. We conclude this paper with research challenges, insights, and future research directions to propose a networked UAV-IDS system which meets required standards of effectiveness and efficiency in terms of the goals of both security and performance.
Astronomical images from optical photometric surveys are typically contaminated with transient artifacts such as cosmic rays, satellite trails and scattered light. We have developed and tested an algorithm that removes these artifacts using a deep, artifact free, static sky coadd image built up through the median combination of point spread function (PSF) homogenized, overlapping single epoch images. Transient artifacts are detected and masked in each single epoch image through comparison with an artifact free, PSF-matched simulated image that is constructed using the PSF-corrected, model fitting catalog from the artifact free coadd image together with the position variable PSF model of the single epoch image. This approach works well not only for cleaning single epoch images with worse seeing than the PSF homogenized coadd, but also the traditionally much more challenging problem of cleaning single epoch images with better seeing. In addition to masking transient artifacts, we have developed an interpolation approach that uses the local PSF and performs well in removing artifacts whose widths are smaller than the PSF full width at half maximum, including cosmic rays, the peaks of saturated stars and bleed trails. We have tested this algorithm on Dark Energy Survey Science Verification data and present performance metrics. More generally, our algorithm can be applied to any survey which images the same part of the sky multiple times.
The Internet of Things (IoT) will soon be omnipresent and billions of sensors and actuators will support our industries and well-being. IoT devices are embedded systems that are connected using wireless technology for most of the cases. The availability of the wireless network serving the IoT, the privacy, integrity, and trustworthiness of the data are of critical importance, since IoT will drive businesses and personal decisions. This paper proposes a new approach in the wireless security domain that leverages advanced wireless technology and the emergence of the unmanned aerial system or vehicle (UAS or UAV). We consider the problem of eavesdropping and analyze how UAVs can aid in reducing, or overcoming this threat in the mobile IoT context. The results show that huge improvements in terms of channel secrecy rate can be achieved when UAVs assist base stations for relaying the information to the desired IoT nodes. Our approach is technology agnostic and can be expanded to address other communications security aspects.
Astronomical software is now a fact of daily life for all hands-on members of our community. Purpose-built software for data reduction and modeling tasks becomes ever more critical as we handle larger amounts of data and simulations. However, the writing of astronomical software is unglamorous, the rewards are not always clear, and there are structural disincentives to releasing software publicly and to embedding it in the scientific literature, which can lead to significant duplication of effort and an incomplete scientific record. We identify some of these structural disincentives and suggest a variety of approaches to address them, with the goals of raising the quality of astronomical software, improving the lot of scientist-authors, and providing benefits to the entire community, analogous to the benefits provided by open access to large survey and simulation datasets. Our aim is to open a conversation on how to move forward. We advocate that: (1) the astronomical community consider software as an integral and fundable part of facility construction and science programs; (2) that software release be considered as integral to the open and reproducible scientific process as are publication and data release; (3) that we adopt technologies and repositories for releasing and collaboration on software that have worked for open-source software; (4) that we seek structural incentives to make the release of software and related publications easier for scientist-authors; (5) that we consider new ways of funding the development of grass-roots software; (6) and that we rethink our values to acknowledge that astronomical software development is not just a technical endeavor, but a fundamental part of our scientific practice.
Astronomical adaptive optics systems are used to increase effective telescope resolution. However, they cannot be used to observe the whole sky since one or more natural guide stars of sufficient brightness must be found within the telescope field of view for the AO system to work. Even when laser guide stars are used, natural guide stars are still required to provide a constant position reference. Here, we introduce a technique to overcome this problem by using rotary unmanned aerial vehicles (UAVs) as a platform from which to produce artificial guide stars. We describe the concept, which relies on the UAV being able to measure its precise relative position. We investigate the adaptive optics performance improvements that can be achieved, which in the cases presented here can improve the Strehl ratio by a factor of at least 2 for a 8~m class telescope. We also discuss improvements to this technique, which is relevant to both astronomical and solar adaptive optics systems.