Do you want to publish a course? Click here

Lagrangian Statistics for Navier-Stokes Turbulence under Fourier-mode reduction: Fractal and Homogeneous Decimations

71   0   0.0 ( 0 )
 Added by Michele Buzzicotti
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study small-scale and high-frequency turbulent fluctuations in three-dimensional flows under Fourier-mode reduction. The Navier-Stokes equations are evolved on a restricted set of modes, obtained as a projection on a fractal or homogeneous Fourier set. We find a strong sensitivity (reduction) of the high-frequency variability of the Lagrangian velocity fluctuations on the degree of mode decimation, similarly to what is already reported for Eulerian statistics. This is quantified by a tendency towards a quasi-Gaussian statistics, i.e., to a reduction of intermittency, at all scales and frequencies. This can be attributed to a strong depletion of vortex filaments and of the vortex stretching mechanism. Nevertheless, we found that Eulerian and Lagrangian ensembles are still connected by a dimensional bridge-relation which is independent of the degree of Fourier-mode decimation.



rate research

Read More

We determine how the differences in the treatment of the subfilter-scale physics affect the properties of the flow for three closely related regularizations of Navier-Stokes. The consequences on the applicability of the regularizations as SGS models are also shown by examining their effects on superfilter-scale properties. Numerical solutions of the Clark-alpha model are compared to two previously employed regularizations, LANS-alpha and Leray-alpha (at Re ~ 3300, Taylor Re ~ 790) and to a DNS. We derive the Karman-Howarth equation for both the Clark-alpha and Leray-alpha models. We confirm one of two possible scalings resulting from this equation for Clark as well as its associated k^(-1) energy spectrum. At sub-filter scales, Clark-alpha possesses similar total dissipation and characteristic time to reach a statistical turbulent steady-state as Navier-Stokes, but exhibits greater intermittency. As a SGS model, Clark reproduces the energy spectrum and intermittency properties of the DNS. For the Leray model, increasing the filter width decreases the nonlinearity and the effective Re is substantially decreased. Even for the smallest value of alpha studied, Leray-alpha was inadequate as a SGS model. The LANS energy spectrum k^1, consistent with its so-called rigid bodies, precludes a reproduction of the large-scale energy spectrum of the DNS at high Re while achieving a large reduction in resolution. However, that this same feature reduces its intermittency compared to Clark-alpha (which shares a similar Karman-Howarth equation). Clark is found to be the best approximation for reproducing the total dissipation rate and the energy spectrum at scales larger than alpha, whereas high-order intermittency properties for larger values of alpha are best reproduced by LANS-alpha.
A dynamic procedure for the Lagrangian Averaged Navier-Stokes-$alpha$ (LANS-$alpha$) equations is developed where the variation in the parameter $alpha$ in the direction of anisotropy is determined in a self-consistent way from data contained in the simulation itself. The dynamic model is initially tested in forced and decaying isotropic turbulent flows where $alpha$ is constant in space but it is allowed to vary in time. It is observed that by using the dynamic LANS-$alpha$ procedure a more accurate simulation of the isotropic homogeneous turbulence is achieved. The energy spectra and the total kinetic energy decay are captured more accurately as compared with the LANS-$alpha$ simulations using a fixed $alpha$. In order to evaluate the applicability of the dynamic LANS-$alpha$ model in anisotropic turbulence, a priori test of a turbulent channel flow is performed. It is found that the parameter $alpha$ changes in the wall normal direction. Near a solid wall, the length scale $alpha$ is seen to depend on the distance from the wall with a vanishing value at the wall. On the other hand, away from the wall, where the turbulence is more isotropic, $alpha$ approaches an almost constant value. Furthermore, the behavior of the subgrid scale stresses in the near wall region is captured accurately by the dynamic LANS-$alpha$ model. The dynamic LANS-$alpha$ model has the potential to extend the applicability of the LANS-$alpha$ equations to more complicated anisotropic flows.
In this work, the scaling statistics of the dissipation along Lagrangian trajectories are investigated by using fluid tracer particles obtained from a high resolution direct numerical simulation with $Re_{lambda}=400$. Both the energy dissipation rate $epsilon$ and the local time averaged $epsilon_{tau}$ agree rather well with the lognormal distribution hypothesis. Several statistics are then examined. It is found that the autocorrelation function $rho(tau)$ of $ln(epsilon(t))$ and variance $sigma^2(tau)$ of $ln(epsilon_{tau}(t))$ obey a log-law with scaling exponent $beta=beta=0.30$ compatible with the intermittency parameter $mu=0.30$. The $q$th-order moment of $epsilon_{tau}$ has a clear power-law on the inertial range $10<tau/tau_{eta}<100$. The measured scaling exponent $K_L(q)$ agrees remarkably with $q-zeta_L(2q)$ where $zeta_L(2q)$ is the scaling exponent estimated using the Hilbert methodology. All these results suggest that the dissipation along Lagrangian trajectories could be modelled by a multiplicative cascade.
We revisit the issue of Lagrangian irreversibility in the context of recent results [Xu, et al., PNAS, 111, 7558 (2014)] on flight-crash events in turbulent flows and show how extreme events in the Eulerian dissipation statistics are related to the statistics of power-fluctuations for tracer trajectories. Surprisingly, we find that particle trajectories in intense dissipation zones are dominated by energy gains sharper than energy losses, contrary to flight-crashes, through a pressure-gradient driven take-off phenomenon. Our conclusions are rationalised by analysing data from simulations of three-dimensional intermittent turbulence, as well as from non-intermittent decimated flows. Lagrangian irreversibility is found to persist even in the latter case, wherein fluctuations of the dissipation rate are shown to be relatively mild and to follow probability distribution functions with exponential tails.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا