No Arabic abstract
Thanks to the advent of the Internet, it is now possible to easily share vast amounts of electronic information and computer resources (which include hardware, computer services, etc.) in open distributed environments. These environments serve as a common platform for heterogeneous users (e.g., corporate, individuals etc.) by hosting customized user applications and systems, providing ubiquitous access to the shared resources and requiring less administrative efforts; as a result, they enable users and companies to increase their productivity. Unfortunately, sharing of resources in open environments has significantly increased the privacy threats to the users. Indeed, shared electronic data may be exploited by third parties, such as Data Brokers, which may aggregate, infer and redistribute (sensitive) personal features, thus potentially impairing the privacy of the individuals. A way to palliate this problem consists on controlling the access of users over the potentially sensitive resources. Specifically, access control management regulates the access to the shared resources according to the credentials of the users, the type of resource and the privacy preferences of the resource/data owners. The efficient management of access control is crucial in large and dynamic environments. Moreover, in order to propose a feasible and scalable solution, we need to get rid of manual management of rules/constraints (in which most available solutions rely) that constitutes a serious burden for the users and the administrators. Finally, access control management should be intuitive for the end users, who usually lack technical expertise, and they may find access control mechanism more difficult to understand and rigid to apply due to its complex configuration settings.
Security researchers have stated that the core concept behind current implementations of access control predates the Internet. These assertions are made to pinpoint that there is a foundational gap in this field, and one should consider revisiting the concepts from the ground up. Moreover, Insider threats, which are an increasing threat vector against organizations are also associated with the failure of access control. Access control models derived from access control matrix encompass three sets of entities, Subjects, Objects and Operations. Typically, objects are considered to be files and operations are regarded as Read, Write, and Execute. This implies an `open sesame approach when granting access to data, i.e. once access is granted, there is no restriction on command executions. Inspired by Functional Encryption, we propose applying access authorizations at a much finer granularity, but instead of an ad-hoc or computationally hard cryptographic approach, we postulate a foundational transformation to access control. From an abstract viewpoint, we suggest storing access authorizations as a three-dimensional tensor, which we call Access Control Tensor (ACT). In Function-based Access Control (FBAC), applications do not give blind folded execution right and can only invoke commands that have been authorized for data segments. In other words, one might be authorized to use a certain command on one object, while being forbidden to use exactly the same command on another object. The theoretical foundations of FBAC are presented along with Policy, Enforcement and Implementation (PEI) requirements of it. A critical analysis of the advantages of deploying FBAC, how it will result in developing a new generation of applications, and compatibility with existing models and systems is also included. Finally, a proof of concept implementation of FBAC is presented.
Many languages and algebras have been proposed in recent years for the specification of authorization policies. For some proposals, such as XACML, the main motivation is to address real-world requirements, typically by providing a complex policy language with somewhat informal evaluation methods; others try to provide a greater degree of formality (particularly with respect to policy evaluation) but support far fewer features. In short, there are very few proposals that combine a rich set of language features with a well-defined semantics, and even fewer that do this for authorization policies for attribute-based access control in open environments. In this paper, we decompose the problem of policy specification into two distinct sub-languages: the policy target language (PTL) for target specification, which determines when a policy should be evaluated; and the policy composition language (PCL) for building more complex policies from existing ones. We define syntax and semantics for two such languages and demonstrate that they can be both simple and expressive. PTaCL, the language obtained by combining the features of these two sub-languages, supports the specification of a wide range of policies. However, the power of PTaCL means that it is possible to define policies that could produce unexpected results. We provide an analysis of how PTL should be restricted and how policies written in PCL should be evaluated to minimize the likelihood of undesirable results.
In order to address the increasing compromise of user privacy on mobile devices, a Fuzzy Logic based implicit authentication scheme is proposed in this paper. The proposed scheme computes an aggregate score based on selected features and a threshold in real-time based on current and historic data depicting user routine. The tuned fuzzy system is then applied to the aggregated score and the threshold to determine the trust level of the current user. The proposed fuzzy-integrated implicit authentication scheme is designed to: operate adaptively and completely in the background, require minimal training period, enable high system accuracy while provide timely detection of abnormal activity. In this paper, we explore Fuzzy Logic based authentication in depth. Gaussian and triangle-based membership functions are investigated and compared using real data over several weeks from different Android phone users. The presented results show that our proposed Fuzzy Logic approach is a highly effective, and viable scheme for lightweight real-time implicit authentication on mobile devices.
As a promising paradigm to reduce both capital and operating expenditures, the cloud radio access network (C-RAN) has been shown to provide high spectral efficiency and energy efficiency. Motivated by its significant theoretical performance gains and potential advantages, C-RANs have been advocated by both the industry and research community. This paper comprehensively surveys the recent advances of C-RANs, including system architectures, key techniques, and open issues. The system architectures with different functional splits and the corresponding characteristics are comprehensively summarized and discussed. The state-of-the-art key techniques in C-RANs are classified as: the fronthaul compression, large-scale collaborative processing, and channel estimation in the physical layer; and the radio resource allocation and optimization in the upper layer. Additionally, given the extensiveness of the research area, open issues and challenges are presented to spur future investigations, in which the involvement of edge cache, big data mining, social-aware device-to-device, cognitive radio, software defined network, and physical layer security for C-RANs are discussed, and the progress of testbed development and trial test are introduced as well.
Access control is an important component for web services such as a cloud. Current clouds tend to design the access control mechanism together with the policy language on their own. It leads to two issues: (i) a cloud user has to learn different policy languages to use multiple clouds, and (ii) a cloud service provider has to customize an authorization mechanism based on its business requirement, which brings high development cost. In this work, a new access control policy language called PERM modeling language (PML) is proposed to express various access control models such as access control list (ACL), role-based access control (RBAC) and attribute-based access control (ABAC), etc. PMLs enforcement mechanism is designed in an interpreter-on-interpreter manner, which not only secures the authorization code with sandboxing, but also extends PML to all programming languages that support Lua. PML is already adopted by real-world projects such as Intels RMD, VMwares Dispatch, Oranges Gobis and so on, which proves PMLs usability. The performance evaluation on OpenStack, CloudStack and Amazon Web Services (AWS) shows PMLs enforcement overhead per request is under 5.9us.