Do you want to publish a course? Click here

Recent Advances in Cloud Radio Access Networks: System Architectures, Key Techniques, and Open Issues

83   0   0.0 ( 0 )
 Added by Mugen Peng
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

As a promising paradigm to reduce both capital and operating expenditures, the cloud radio access network (C-RAN) has been shown to provide high spectral efficiency and energy efficiency. Motivated by its significant theoretical performance gains and potential advantages, C-RANs have been advocated by both the industry and research community. This paper comprehensively surveys the recent advances of C-RANs, including system architectures, key techniques, and open issues. The system architectures with different functional splits and the corresponding characteristics are comprehensively summarized and discussed. The state-of-the-art key techniques in C-RANs are classified as: the fronthaul compression, large-scale collaborative processing, and channel estimation in the physical layer; and the radio resource allocation and optimization in the upper layer. Additionally, given the extensiveness of the research area, open issues and challenges are presented to spur future investigations, in which the involvement of edge cache, big data mining, social-aware device-to-device, cognitive radio, software defined network, and physical layer security for C-RANs are discussed, and the progress of testbed development and trial test are introduced as well.



rate research

Read More

In this article, we overview intelligent reflecting surface (IRS)-empowered wireless communication systems. We first present the fundamentals of IRS-assisted wireless transmission. On this basis, we explore the integration of IRS with various advanced transmission technologies, such as millimeter wave, non-orthogonal multiple access, and physical layer security. Following this, we discuss the effects of hardware impairments and imperfect channel-state-information on the IRS system performance. Finally, we highlight several open issues to be addressed.
Rate-splitting multiple access (RSMA) has been recognized as a promising physical layer strategy for 6G. Motivated by ever increasing popularity of cache-enabled content delivery in wireless communications, this paper proposes an innovative multigroup multicast transmission scheme based on RSMA for cache-aided cloud-radio access networks (C-RAN). Our proposed scheme not only exploits the properties of content-centric communications and local caching at the base stations (BSs), but also incorporates RSMA to better manage interference in multigroup multicast transmission with statistical channel state information (CSI) known at the central processor (CP) and the BSs. At the RSMA-enabled cloud CP, the message of each multicast group is split into a private and a common part with the former private part being decoded by all users in the respective group and the latter common part being decoded by multiple users from other multicast groups. Common message decoding is done for the purpose of mitigating the interference. In this work, we jointly optimize the clustering of BSs and the precoding with the aim of maximizing the minimum rate among all multicast groups to guarantee fairness serving all groups. The problem is a mixed-integer non-linear stochastic program (MINLSP), which is solved by a practical algorithm we proposed including a heuristic clustering algorithm for assigning a set of BSs to serve each user followed by an efficient iterative algorithm that combines the sample average approximation (SAA) and weighted minimum mean square error (WMMSE) to solve the stochastic non-convex sub-problem of precoder design. Numerical results show the explicit max-min rate gain of our proposed transmission scheme compared to the state-of-the-art trivial interference processing methods. Therefore, we conclude that RSMA is a promising technique for cache-aided C-RAN.
In cloud radio access networks (C-RANs), the baseband units and radio units of base stations are separated, which requires high-capacity fronthaul links connecting both parts. In this paper, we consider the delay-aware fronthaul allocation problem for C-RANs. The stochastic optimization problem is formulated as an infinite horizon average cost Markov decision process. To deal with the curse of dimensionality, we derive a closed-form approximate priority function and the associated error bound using perturbation analysis. Based on the closed-form approximate priority function, we propose a low-complexity delay-aware fronthaul allocation algorithm solving the per-stage optimization problem. The proposed solution is further shown to be asymptotically optimal for sufficiently small cross link path gains. Finally, the proposed fronthaul allocation algorithm is compared with various baselines through simulations, and it is shown that significant performance gain can be achieved.
119 - Max Pettini 2006
Among the light elements created in the Big Bang, deuterium is one of the most difficult to detect but is also the one whose abundance depends most sensitively on the density of baryons. Thus, although we still have only a few positive identifications of D at high redshifts--when the D/H ratio was close to its primordial value--they give us the most reliable determination of the baryon density, in excellent agreement with measures obtained from entirely different probes, such as the anisotropy of the cosmic microwave background temperature and the average absorption of the UV light of quasars by the intergalactic medium. In this review, I relate observations of D/H in distant gas clouds to the large body of data on the local abundance of D obtained in the last few years with the FUSE satellite. I also discuss some of the outstanding problems in light element abundances and consider future prospects for advances in this area.
Channel matrix sparsification is considered as a promising approach to reduce the progressing complexity in large-scale cloud-radio access networks (C-RANs) based on ideal channel condition assumption. In this paper, the research of channel sparsification is extend to practical scenarios, in which the perfect channel state information (CSI) is not available. First, a tractable lower bound of signal-to-interferenceplus-noise ratio (SINR) fidelity, which is defined as a ratio of SINRs with and without channel sparsification, is derived to evaluate the impact of channel estimation error. Based on the theoretical results, a Dinkelbach-based algorithm is proposed to achieve the global optimal performance of channel matrix sparsification based on the criterion of distance. Finally, all these results are extended to a more challenging scenario with pilot contamination. Finally, simulation results are shown to evaluate the performance of channel matrix sparsification with imperfect CSIs and verify our analytical results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا