Do you want to publish a course? Click here

$mathcal{PT}$ symmetric phase transition and single-photon transmission in an optical trimmer system

262   0   0.0 ( 0 )
 Added by Z. H. Wang
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The parity-time ($mathcal{PT}$) symmetric structures have exhibited potential applications in developing various robust quantum devices. In an optical trimmer with balanced loss and gain, we analytically study the $mathcal{PT}$ symmetric phase transition by investigating the spontaneous symmetric breaking. We also illustrate the single-photon transmission behaviors in both of the $mathcal{PT}$ symmetric and $mathcal{PT}$ symmetry broken phases. We find (i) the non-periodical dynamics of single-photon transmission in the $mathcal{PT}$ symmetry broken phase instead of $mathcal{PT}$ symmetric phase can be regarded as a signature of phase transition; and (ii) it shows unidirectional single-photon transmission behavior in both of the phases but comes from different underlying physical mechanisms. The obtained results may be useful to implement the photonic devices based on coupled-cavity system.

rate research

Read More

Over the past decade, non-Hermitian, $mathcal{PT}$-symmetric Hamiltonians have been investigated as candidates for both, a fundamental, unitary, quantum theory, and open systems with a non-unitary time evolution. In this paper, we investigate the implications of the former approach in the context of the latter. Motivated by the invariance of the $mathcal{PT}$ (inner) product under time evolution, we discuss the dynamics of wave-function phases in a wide range of $mathcal{PT}$-symmetric lattice models. In particular, we numerically show that, starting with a random initial state, a universal, gain-site location dependent locking between wave function phases at adjacent sites occurs in the $mathcal{PT}$-symmetry broken region. Our results pave the way towards understanding the physically observable implications of time-invariants in the non-unitary dynamics produced by $mathcal{PT}$-symmetric Hamiltonians.
Parity-time($mathcal{PT}$)-symmetric systems, featuring real eigenvalues despite its non-Hermitian nature, have been widely utilized to achieve exotic functionalities in the classical realm, such as loss-induced transparency or lasing revival. By approaching the exceptional point (EP) or the coalescences of both eigenvalues and eigenstates, unconventional effects are also expected to emerge in pure quantum $mathcal{PT}$ devices. Here, we report experimental evidences of spontaneous $mathcal{PT}$ symmetry breaking in a single cold $^{40}mathrm{Ca}^{+}$ ion, and more importantly, a counterintuitive effect of perfect quantum coherence occurring at the EP. Excellent agreement between experimental results and theoretical predictions is identified. In view of the versatile role of cold ions in building quantum memory or processor, our experiment provides a new platform to explore and utilize pure quantum EP effects, with diverse applications in quantum engineering of trapped ions.
Open systems with gain, loss, or both, described by non-Hermitian Hamiltonians, have been a research frontier for the past decade. In particular, such Hamiltonians which possess parity-time ($mathcal{PT}$) symmetry feature dynamically stable regimes of unbroken symmetry with completely real eigenspectra that are rendered into complex conjugate pairs as the strength of the non-Hermiticity increases. By subjecting a $mathcal{PT}$-symmetric system to a periodic (Floquet) driving, the regime of dynamical stability can be dramatically affected, leading to a frequency-dependent threshold for the $mathcal{PT}$-symmetry breaking transition. We present a simple model of a time-dependent $mathcal{PT}$-symmetric Hamiltonian which smoothly connects the static case, a $mathcal{PT}$-symmetric Floquet case, and a neutral-$mathcal{PT}$-symmetric case. We analytically and numerically analyze the $mathcal{PT}$ phase diagrams in each case, and show that slivers of $mathcal{PT}$-broken ($mathcal{PT}$-symmetric) phase extend deep into the nominally low (high) non-Hermiticity region.
We theoretically study the dynamics of typical optomechanical systems, consisting of a passive optical mode and an active mechanical mode, in the $mathcal{PT}$- and broken-$mathcal{PT}$-symmetric regimes. By fully analytical treatments for the dynamics of the average displacement and particle numbers, we reveal the phase diagram under different conditions and the various regimes of both $mathcal{PT}$-symmetry and stability of the system. We find that by appropriately tuning either mechanical gain or optomechanical coupling, both phase transitions of the $mathcal{PT}$-symmetry and stability of the system can be flexibly controlled. As a result, the dynamical behaviors of the average displacement, photons, and phonons are radically changed in different regimes. Our study shows that $mathcal{PT}$-symmetric optomechanical devices can serve as a powerful tool for the manipulation of mechanical motion, photons, and phonons.
The recently theoretical and experimental researches related to $mathcal{PT}$-symmetric system have attracted unprecedented attention because of various novel features and potentials in extending canonical quantum mechanics. However, as the counterpart of $mathcal{PT}$-symmetry, there are only a few researches on anti-$mathcal{PT}$-symmetry. Here, we propose an algorithm for simulating the universal anti-$mathcal{PT}$-symmetric system with quantum circuit. Utilizing the protocols, an oscillation of information flow is observed for the first time in our Nuclear Magnetic Resonance quantum simulator. We will show that information will recover from the environment completely when the anti-$mathcal{PT}$-symmetry is broken, whereas no information can be retrieved in the symmetry-unbroken phase. Our work opens the gate for practical quantum simulation and experimental investigation of universal anti-$mathcal{PT}$-symmetric system in quantum computer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا