We propose a new numerical scheme for Backward Stochastic Differential Equations based on branching processes. We approximate an arbitrary (Lipschitz) driver by local polynomials and then use a Picard iteration scheme. Each step of the Picard iteration can be solved by using a representation in terms of branching diffusion systems, thus avoiding the need for a fine time discretization. In contrast to the previous literature on the numerical resolution of BSDEs based on branching processes, we prove the convergence of our numerical scheme without limitation on the time horizon. Numerical simulations are provided to illustrate the performance of the algorithm.
We extend the branching process based numerical algorithm of Bouchard et al. [3], that is dedicated to semilinear PDEs (or BSDEs) with Lipschitz nonlinearity, to the case where the nonlinearity involves the gradient of the solution. As in [3], this requires a localization procedure that uses a priori estimates on the true solution, so as to ensure the well-posedness of the involved Picard iteration scheme, and the global convergence of the algorithm. When, the nonlinearity depends on the gradient, the later needs to be controlled as well. This is done by using a face-lifting procedure. Convergence of our algorithm is proved without any limitation on the time horizon. We also provide numerical simulations to illustrate the performance of the algorithm.
In this work, we consider the Biot problem with uncertain poroelastic coefficients. The uncertainty is modelled using a finite set of parameters with prescribed probability distribution. We present the variational formulation of the stochastic partial differential system and establish its well-posedness. We then discuss the approximation of the parameter-dependent problem by non-intrusive techniques based on Polynomial Chaos decompositions. We specifically focus on sparse spectral projection methods, which essentially amount to performing an ensemble of deterministic model simulations to estimate the expansion coefficients. The deterministic solver is based on a Hybrid High-Order discretization supporting general polyhedral meshes and arbitrary approximation orders. We numerically investigate the convergence of the probability error of the Polynomial Chaos approximation with respect to the level of the sparse grid. Finally, we assess the propagation of the input uncertainty onto the solution considering an injection-extraction problem.
Complex computer codes, for instance simulating physical phenomena, are often too time expensive to be directly used to perform uncertainty, sensitivity, optimization and robustness analyses. A widely accepted method to circumvent this problem consists in replacing cpu time expensive computer models by cpu inexpensive mathematical functions, called metamodels. In this paper, we focus on the Gaussian process metamodel and two essential steps of its definition phase. First, the initial design of the computer code input variables (which allows to fit the metamodel) has to honor adequate space filling properties. We adopt a numerical approach to compare the performance of different types of space filling designs, in the class of the optimal Latin hypercube samples, in terms of the predictivity of the subsequent fitted metamodel. We conclude that such samples with minimal wrap-around discrepancy are particularly well-suited for the Gaussian process metamodel fitting. Second, the metamodel validation process consists in evaluating the metamodel predictivity with respect to the initial computer code. We propose and test an algorithm which optimizes the distance between the validation points and the metamodel learning points in order to estimate the true metamodel predictivity with a minimum number of validation points. Comparisons with classical validation algorithms and application to a nuclear safety computer code show the relevance of this new sequential validation design.
In this work, we study the numerical approximation of a class of singular fully coupled forward backward stochastic differential equations. These equations have a degenerate forward component and non-smooth terminal condition. They are used, for example, in the modeling of carbon market[9] and are linked to scalar conservation law perturbed by a diffusion. Classical FBSDEs methods fail to capture the correct entropy solution to the associated quasi-linear PDE. We introduce a splitting approach that circumvent this difficulty by treating differently the numerical approximation of the diffusion part and the non-linear transport part. Under the structural condition guaranteeing the well-posedness of the singular FBSDEs [8], we show that the splitting method is convergent with a rate $1/2$. We implement the splitting scheme combining non-linear regression based on deep neural networks and conservative finite difference schemes. The numerical tests show very good results in possibly high dimensional framework.
When time-dependent partial differential equations (PDEs) are solved numerically in a domain with curved boundary or on a curved surface, mesh error and geometric approximation error caused by the inaccurate location of vertices and other interior grid points, respectively, could be the main source of the inaccuracy and instability of the numerical solutions of PDEs. The role of these geometric errors in deteriorating the stability and particularly the conservation properties are largely unknown, which seems to necessitate very fine meshes especially to remove geometric approximation error. This paper aims to investigate the effect of geometric approximation error by using a high-order mesh with negligible geometric approximation error, even for high order polynomial of order p. To achieve this goal, the high-order mesh generator from CAD geometry called NekMesh is adapted for surface mesh generation in comparison to traditional meshes with non-negligible geometric approximation error. Two types of numerical tests are considered. Firstly, the accuracy of differential operators is compared for various p on a curved element of the sphere. Secondly, by applying the method of moving frames, four different time-dependent PDEs on the sphere are numerically solved to investigate the impact of geometric approximation error on the accuracy and conservation properties of high-order numerical schemes for PDEs on the sphere.
Bruno Bouchard
,Xiaolu Tan
,Xavier Warin
.
(2016)
.
"Numerical approximation of BSDEs using local polynomial drivers and branching processes"
.
Xiaolu Tan
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا