No Arabic abstract
N-methyl-D-aspartate receptors (NMDARs) are glycoproteins in the brain central to learning and memory. The effects of glycosylation on the structure and dynamics of NMDARs are largely unknown. In this work, we use extensive molecular dynamics simulations of GluN1 and GluN2B ligand binding domains (LBDs) of NMDARs to investigate these effects. Our simulations predict that intra-domain interactions involving the glycan attached to residue GluN1-N440 stabilize closed-clamshell conformations of the GluN1 LBD. The glycan on GluN2B-N688 shows a similar, though weaker, effect. Based on these results, and assuming the transferability of the results of LBD simulations to the full receptor, we predict that glycans at GluN1-N440 might play a potentiator role in NMDARs. To validate this prediction, we perform electrophysiological analysis of full-length NMDARs with a glycosylation-preventing GluN1-N440Q mutation, and demonstrate an increase in the glycine EC50 value. Overall, our results suggest an intramolecular potentiating role of glycans on NMDA receptors.
Many important analgesics relieve pain by binding to the $mu$-Opioid Receptor ($mu$OR), which makes the $mu$OR among the most clinically relevant proteins of the G Protein Coupled Receptor (GPCR) family. Despite previous studies on the activation pathways of the GPCRs, the mechanism of opiate binding and the selectivity of $mu$OR are largely unknown. We performed extensive molecular dynamics (MD) simulation and analysis to find the selective allosteric binding sites of the $mu$OR and the path opiates take to bind to the orthosteric site. In this study, we predicted that the allosteric site is responsible for the attraction and selection of opiates. Using Markov state models and machine learning, we traced the pathway of opiates in binding to the orthosteric site, the main binding pocket. Our results have important implications in designing novel analgesics.
We investigated progestin and corticosteroid activation of the progesterone receptor (PR) from elephant shark (Callorhinchus milii), a cartilaginous fish belonging to the oldest group of jawed vertebrates. Comparison with human PR experiments provides insights into the evolution of steroid activation of human PR. At 1 nM steroid, elephant shark PR is activated by progesterone, 17-hydroxy-progesterone, 20beta-hydroxy-progesterone, 11-deoxycorticosterone (21-hydroxyprogesterone) and 11-deoxycortisol. At 1 nM steroid, human PR is activated only by progesterone and11-deoxycorticosterone indicating increased specificity for progestins and corticosteroids during the evolution of human PR. RU486, an important clinical antagonist of human PR, did not inhibit progesterone activation of elephant shark PR. Cys-528 in elephant shark PR corresponds to Gly-722 in human PR, which is essential for RU486 inhibition of human PR. Confirming the importance of this site on elephant shark PR, RU486 inhibited progesterone activation of the Cys528Gly mutant PR. There also was a decline in activation of elephant shark Cys528Gly PR by 11-deoxycortisol, 17-hydroxy-progesterone and 20beta-hydroxy-progesterone and an increase in activation of human Gly722Cys PR by 11-deoxycortisol and decreased activation by corticosterone. One or more of these changes may have selected for the mutation corresponding to human glycine-722 PR that first evolved in platypus PR, a basal mammal.
Exploring the protein-folding problem has been a long-standing challenge in molecular biology. Protein folding is highly dependent on folding of secondary structures as the way to pave a native folding pathway. Here, we demonstrate that a feature of a large hydrophobic surface area covering most side-chains on one side or the other side of adjacent $beta$-strands of a $beta$-sheet is prevail in almost all experimentally determined $beta$-sheets, indicating that folding of $beta$-sheets is most likely triggered by multistage hydrophobic interactions among neighbored side-chains of unfolded polypeptides, enable $beta$-sheets fold reproducibly following explicit physical folding codes in aqueous environments. $beta$-turns often contain five types of residues characterized with relatively small exposed hydrophobic proportions of their side-chains, that is explained as these residues can block hydrophobic effect among neighbored side-chains in sequence. Temperature dependence of the folding of $beta$-sheet is thus attributed to temperature dependence of the strength of the hydrophobicity. The hydrophobic-effect-based mechanism responsible for $beta$-sheets folding is verified by bioinformatics analyses of thousands of results available from experiments. The folding codes in amino acid sequence that dictate formation of a $beta$-hairpin can be deciphered through evaluating hydrophobic interaction among side-chains of an unfolded polypeptide from a $beta$-strand-like thermodynamic metastable state.
Considering that life on earth evolved about 3.7 billion years ago, vertebrates are young, appearing in the fossil record during the Cambrian explosion about 542 to 515 million years ago. Results from sequence analyses of genomes from bacteria, yeast, plants, invertebrates and vertebrates indicate that receptors for adrenal steroids (aldosterone, cortisol), and sex steroids (estrogen, progesterone, testosterone) also are young, with receptors for estrogens and 3-ketosteroids first appearing in basal chordates (cephalochordates: amphioxus), which are close ancestors of vertebrates. An ancestral progesterone receptor and an ancestral corticoid receptor, the common ancestor of the glucocorticoid and mineralocorticoid receptors, evolved in jawless vertebrates (cyclostomes: lampreys, hagfish). This was followed by evolution of an androgen receptor and distinct glucocorticoid and mineralocorticoid receptors in cartilaginous fishes (gnathostomes: sharks). Adrenal and sex steroid receptors are not found in echinoderms: and hemichordates, which are ancestors in the lineage of cephalochordates and vertebrates. The presence of steroid receptors in vertebrates, in which these steroid receptors act as master switches to regulate differentiation, development, reproduction, immune responses, electrolyte homeostasis and stress responses, argues for an important role for steroid receptors in the evolutionary success of vertebrates, considering that the human genome contains about 22,000 genes, which is not much larger than genomes of invertebrates, such as Caenorhabditis elegans (~18,000 genes) and Drosophila (~14,000 genes).
Stochastic simulations of coarse-grained protein models are used to investigate the propensity to form knots in early stages of protein folding. The study is carried out comparatively for two homologous carbamoyltransferases, a natively-knotted N-acetylornithine carbamoyltransferase (AOTCase) and an unknotted ornithine carbamoyltransferase (OTCase). In addition, two different sets of pairwise amino acid interactions are considered: one promoting exclusively native interactions, and the other additionally including non-native quasi-chemical and electrostatic interactions. With the former model neither protein show a propensity to form knots. With the additional non-native interactions, knotting propensity remains negligible for the natively-unknotted OTCase while for AOTCase it is much enhanced. Analysis of the trajectories suggests that the different entanglement of the two transcarbamylases follows from the tendency of the C-terminal to point away from (for OTCase) or approach and eventually thread (for AOTCase) other regions of partly-folded protein. The analysis of the OTCase/AOTCase pair clarifies that natively-knotted proteins can spontaneously knot during early folding stages and that non-native sequence-dependent interactions are important for promoting and disfavoring early knotting events.