No Arabic abstract
In the last decade we have witnessed a rapid growth in data center systems, requiring new and highly complex networking devices. The need to refresh networking infrastructure whenever new protocols or functions are introduced, and the increasing costs that this entails, are of a concern to all data center providers. New generations of Systems on Chip (SoC), integrating microprocessors and higher bandwidth interfaces, are an emerging solution to this problem. These devices permit entirely new systems and architectures that can obviate the replacement of existing networking devices while enabling seamless functionality change. In this work, we explore open source, RISC based, SoC architectures with high performance networking capabilities. The prototype architectures are implemented on the NetFPGA-SUME platform. Beyond details of the architecture, we also describe the hardware implementation and the porting of operating systems to the platform. The platform can be exploited for the development of practical networking appliances, and we provide use case examples.
Neural Networks (NN) have been proven to be powerful tools to analyze Big Data. However, traditional CPUs cannot achieve the desired performance and/or energy efficiency for NN applications. Therefore, numerous NN accelerators have been used or designed to meet these goals. These accelerators all fall into three categories: GPGPUs, ASIC NN Accelerators and CISC NN Accelerators. Though CISC NN Accelerators can achieve considerable smaller memory footprint than GPGPU thus improve energy efficiency; they still fail to provide same level of data reuse optimization achieved by ASIC NN Accelerators because of the inherited poor pragrammability of their CISC architecture. We argue that, for NN Accelerators, RISC is a better design choice than CISC, as is the case with general purpose processors. We propose RISC-NN, a novel many-core RISC-based NN accelerator that achieves high expressiveness and high parallelism and features strong programmability and low control-hardware costs. We show that, RISC-NN can implement all the necessary instructions of state-of-the-art CISC NN Accelerators; in the meantime, RISC-NN manages to achieve advanced optimization such as multiple-level data reuse and support for Sparse NN applications which previously only existed in ASIC NN Accelerators. Experiment results show that, RISC-NN achieves on average 11.88X performance efficiency compared with state-of-the-art Nvidia TITAN Xp GPGPU for various NN applications. RISC-NN also achieves on average 1.29X, 8.37X and 21.71X performance efficiency over CISC-based TPU in CNN, MLP and LSTM applications, respectively. Finally, RISC-NN can achieve additional 26.05% performance improvement and 33.13% energy reduction after applying pruning for Sparse NN applications.
Multi-tenancy for latency-critical applications leads to re-source interference and unpredictable performance. Core reconfiguration opens up more opportunities for colocation,as it allows the hardware to adjust to the dynamic performance and power needs of a specific mix of co-scheduled applications. However, reconfigurability also introduces challenges, as even for a small number of reconfigurable cores, exploring the design space becomes more time- and resource-demanding. We present CuttleSys, a runtime for reconfigurable multi-cores that leverages scalable and lightweight data mining to quickly identify suitable core and cache configurations for a set of co-scheduled applications. The runtime combines collaborative filtering to infer the behavior of each job on every core and cache configuration, with Dynamically Dimensioned Search to efficiently explore the configuration space. We evaluate CuttleSys on multicores with tens of reconfigurable cores and show up to 2.46x and 1.55x performance improvements compared to core-level gating and oracle-like asymmetric multicores respectively, under stringent power constraints.
One of the key enablers of future wireless communications is constituted by massive multiple-input multiple-output (MIMO) systems, which can improve the spectral efficiency by orders of magnitude. However, in existing massive MIMO systems, conventional phased arrays are used for beamforming, which result in excessive power consumption and hardware cost. Recently, reconfigurable intelligent surface (RIS) has been considered as one of the revolutionary technologies to enable energy-efficient and smart wireless communications, which is a two-dimensional structure with a large number of passive elements. In this paper, we propose and develop a new type of high-gain yet low-cost RIS having 256 elements. The proposed RIS combines the functions of phase shift and radiation together on an electromagnetic surface, where positive intrinsic-negative (PIN) diodes are used to realize 2-bit phase shifting for beamforming. Based on this radical design, the worlds first wireless communication prototype using RIS having 256 2-bit elements is designed and developed. Specifically, the prototype conceived consists of modular hardware and flexible software, including the hosts for parameter setting and data exchange, the universal software radio peripherals (USRPs) for baseband and radio frequency (RF) signal processing, as well as the RIS for signal transmission and reception. Our performance evaluation confirms the feasibility and efficiency of RISs in future wireless communications. More particularly, it is shown that a 21.7 dBi antenna gain can be obtained by the proposed RIS at 2.3 GHz, while at the millimeter wave (mmWave) frequency, i.e., 28.5 GHz, a 19.1 dBi antenna gain can be achieved. Furthermore, the over-the-air (OTA) test results show that the RIS-based wireless communication prototype developed is capable of significantly reducing the power consumption.
We introduce ratatoskr, an open-source framework for in-depth power, performance and area (PPA) analysis in NoCs for 3D-integrated and heterogeneous System-on-Chips (SoCs). It covers all layers of abstraction by providing a NoC hardware implementation on RT level, a NoC simulator on cycle-accurate level and an application model on transaction level. By this comprehensive approach, ratatoskr can provide the following specific PPA analyses: Dynamic power of links can be measured within 2.4% accuracy of bit-level simulations while maintaining cycle-accurate simulation speed. Router power is determined from RT level synthesis combined with cycle-accurate simulations. The performance of the whole NoC can be measured both via cycle-accurate and RT level simulations. The performance of individual routers is obtained from RT level including gate-level verification. The NoC area is calculated from RT level. Despite these manifold features, ratatoskr offers easy two-step user interaction: First, a single point-of-entry that allows to set design parameters and second, PPA reports are generated automatically. For both the input and the output, different levels of abstraction can be chosen for high-level rapid network analysis or low-level improvement of architectural details. The synthesize NoC model reduces up to 32% total router power and 3% router area in comparison to a conventional standard router. As a forward-thinking and unique feature not found in other NoC PPA-measurement tools, ratatoskr supports heterogeneous 3D integration that is one of the most promising integration paradigms for upcoming SoCs. Thereby, ratatoskr lies the groundwork to design their communication architectures.
The current trend for domain-specific architectures (DSAs) has led to renewed interest in research test chips to demonstrate new specialized hardware. Tape-outs also offer huge pedagogical value garnered from real hands-on exposure to the whole system stack. However, successful tape-outs demand hard-earned experience, and the design process is time consuming and fraught with challenges. Therefore, custom chips have remained the preserve of a small number of research groups, typically focused on circuit design research. This paper describes the CHIPKIT framework. We describe a reusable SoC subsystem which provides basic IO, an on-chip programmable host, memory and peripherals. This subsystem can be readily extended with new IP blocks to generate custom test chips. We also present an agile RTL development flow, including a code generation tool calledVGEN. Finally, we outline best practices for full-chip validation across the entire design cycle.