No Arabic abstract
One of the key enablers of future wireless communications is constituted by massive multiple-input multiple-output (MIMO) systems, which can improve the spectral efficiency by orders of magnitude. However, in existing massive MIMO systems, conventional phased arrays are used for beamforming, which result in excessive power consumption and hardware cost. Recently, reconfigurable intelligent surface (RIS) has been considered as one of the revolutionary technologies to enable energy-efficient and smart wireless communications, which is a two-dimensional structure with a large number of passive elements. In this paper, we propose and develop a new type of high-gain yet low-cost RIS having 256 elements. The proposed RIS combines the functions of phase shift and radiation together on an electromagnetic surface, where positive intrinsic-negative (PIN) diodes are used to realize 2-bit phase shifting for beamforming. Based on this radical design, the worlds first wireless communication prototype using RIS having 256 2-bit elements is designed and developed. Specifically, the prototype conceived consists of modular hardware and flexible software, including the hosts for parameter setting and data exchange, the universal software radio peripherals (USRPs) for baseband and radio frequency (RF) signal processing, as well as the RIS for signal transmission and reception. Our performance evaluation confirms the feasibility and efficiency of RISs in future wireless communications. More particularly, it is shown that a 21.7 dBi antenna gain can be obtained by the proposed RIS at 2.3 GHz, while at the millimeter wave (mmWave) frequency, i.e., 28.5 GHz, a 19.1 dBi antenna gain can be achieved. Furthermore, the over-the-air (OTA) test results show that the RIS-based wireless communication prototype developed is capable of significantly reducing the power consumption.
The advantages of millimeter-wave and large antenna arrays technologies for accurate wireless localization received extensive attentions recently. However, how to further improve the accuracy of wireless localization, even in the case of obstructed line-of-sight, is largely undiscovered. In this paper, the reconfigurable intelligent surface (RIS) is introduced into the system to make the positioning more accurate. First, we establish the three-dimensional RIS-assisted wireless localization channel model. After that, we derive the Fisher information matrix and the Cramer-Rao lower bound for evaluating the estimation of absolute mobile station position. Finally, we propose an alternative optimization method and a gradient decent method to optimize the reflect beamforming, which aims to minimize the Cramer-Rao lower bound to obtain a more accurate estimation. Our results show that the proposed methods significantly improve the accuracy of positioning, and decimeter-level or even centimeter-level positioning can be achieved by utilizing the RIS with a large number of reflecting elements.
Thanks to the line-of-sight (LoS) transmission and flexibility, unmanned aerial vehicles (UAVs) effectively improve the throughput of wireless networks. Nevertheless, the LoS links are prone to severe deterioration by complex propagation environments, especially in urban areas. Reconfigurable intelligent surfaces (RISs), as a promising technique, can significantly improve the propagation environment and enhance communication quality by intelligently reflecting the received signals. Motivated by this, the joint UAV trajectory and RISs passive beamforming design for a novel RIS-assisted UAV communication system is investigated to maximize the average achievable rate in this letter. To tackle the formulated non-convex problem, we divide it into two subproblems, namely, passive beamforming and trajectory optimization. We first derive a closed-form phase-shift solution for any given UAV trajectory to achieve the phase alignment of the received signals from different transmission paths. Then, with the optimal phase-shift solution, we obtain a suboptimal trajectory solution by using the successive convex approximation (SCA) method. Numerical results demonstrate that the proposed algorithm can considerably improve the average achievable rate of the system.
Reconfigurable Intelligent Surface (RIS) is a promising solution to reconfigure the wireless environment in a controllable way. To compensate for the double-fading attenuation in the RIS-aided link, a large number of passive reflecting elements (REs) are conventionally deployed at the RIS, resulting in large surface size and considerable circuit power consumption. In this paper, we propose a new type of RIS, called active RIS, where each RE is assisted by active loads (negative resistance), that reflect and amplify the incident signal instead of only reflecting it with the adjustable phase shift as in the case of a passive RIS. Therefore, for a given power budget at the RIS, a strengthened RIS-aided link can be achieved by increasing the number of active REs as well as amplifying the incident signal. We consider the use of an active RIS to a single input multiple output (SIMO) system. {However, it would unintentionally amplify the RIS-correlated noise, and thus the proposed system has to balance the conflict between the received signal power maximization and the RIS-correlated noise minimization at the receiver. To achieve this goal, it has to optimize the reflecting coefficient matrix at the RIS and the receive beamforming at the receiver.} An alternating optimization algorithm is proposed to solve the problem. Specifically, the receive beamforming is obtained with a closed-form solution based on linear minimum-mean-square-error (MMSE) criterion, while the reflecting coefficient matrix is obtained by solving a series of sequential convex approximation (SCA) problems. Simulation results show that the proposed active RIS-aided system could achieve better performance over the conventional passive RIS-aided system with the same power budget.
Channel reciprocity greatly facilitates downlink precoding in time-division duplexing (TDD) multiple-input multiple-output (MIMO) communications without the need for channel state information (CSI) feedback. Recently, reconfigurable intelligent surfaces (RISs) emerge as a promising technology to enhance the performance of future wireless networks. However, since the artificial electromagnetic characteristics of RISs do not strictly follow the normal laws of nature, it brings up a question: does the channel reciprocity hold in RIS-assisted TDD wireless networks? After briefly reviewing the reciprocity theorem, in this article, we show that there still exists channel reciprocity for RIS-assisted wireless networks satisfying certain conditions. We also experimentally demonstrate the reciprocity at the sub-6 GHz and the millimeter-wave frequency bands by using two fabricated RISs. Furthermore, we introduce several RIS-assisted approaches to realizing nonreciprocal channels. Finally, potential opportunities brought by reciprocal/nonreciprocal RISs and future research directions are outlined.
Intelligent reflecting surface (IRS) is a promising technology for wireless communications, thanks to its potential capability to engineer the radio environment. However, in practice, such an envisaged benefit is attainable only when the passive IRS is of a sufficiently large size, for which the conventional uniform plane wave (UPW)-based channel model may become inaccurate. In this paper, we pursue a new channel modelling and performance analysis for wireless communications with extremely large-scale IRS (XL-IRS). By taking into account the variations in signals amplitude and projected aperture across different reflecting elements, we derive both lower- and upper-bounds of the received signal-to-noise ratio (SNR) for the general uniform planar array (UPA)-based XL-IRS. Our results reveal that, instead of scaling quadratically with the increased number of reflecting elements M as in the conventional UPW model, the SNR under the more practically applicable non-UPW model increases with M only with a diminishing return and gets saturated eventually. To gain more insights, we further study the special case of uniform linear array (ULA)-based XL-IRS, for which a closed-form SNR expression in terms of the IRS size and transmitter/receiver location is derived. This result shows that the SNR mainly depends on the two geometric angles formed by the transmitter/receiver locations with the IRS, as well as the boundary points of the IRS. Numerical results validate our analysis and demonstrate the importance of proper channel modelling for wireless communications aided by XL-IRS.