No Arabic abstract
Translating or rotating an input image should not affect the results of many computer vision tasks. Convolutional neural networks (CNNs) are already translation equivariant: input image translations produce proportionate feature map translations. This is not the case for rotations. Global rotation equivariance is typically sought through data augmentation, but patch-wise equivariance is more difficult. We present Harmonic Networks or H-Nets, a CNN exhibiting equivariance to patch-wise translation and 360-rotation. We achieve this by replacing regular CNN filters with circular harmonics, returning a maximal response and orientation for every receptive field patch. H-Nets use a rich, parameter-efficient and low computational complexity representation, and we show that deep feature maps within the network encode complicated rotational invariants. We demonstrate that our layers are general enough to be used in conjunction with the latest architectures and techniques, such as deep supervision and batch normalization. We also achieve state-of-the-art classification on rotated-MNIST, and competitive results on other benchmark challenges.
We propose a semantic segmentation model that exploits rotation and reflection symmetries. We demonstrate significant gains in sample efficiency due to increased weight sharing, as well as improvements in robustness to symmetry transformations. The group equivariant CNN framework is extended for segmentation by introducing a new equivariant (G->Z2)-convolution that transforms feature maps on a group to planar feature maps. Also, equivariant transposed convolution is formulated for up-sampling in an encoder-decoder network. To demonstrate improvements in sample efficiency we evaluate on multiple data regimes of a rotation-equivariant segmentation task: cancer metastases detection in histopathology images. We further show the effectiveness of exploiting more symmetries by varying the size of the group.
Given an image dataset, we are often interested in finding data generative factors that encode semantic content independently from pose variables such as rotation and translation. However, current disentanglement approaches do not impose any specific structure on the learned latent representations. We propose a method for explicitly disentangling image rotation and translation from other unstructured latent factors in a variational autoencoder (VAE) framework. By formulating the generative model as a function of the spatial coordinate, we make the reconstruction error differentiable with respect to latent translation and rotation parameters. This formulation allows us to train a neural network to perform approximate inference on these latent variables while explicitly constraining them to only represent rotation and translation. We demonstrate that this framework, termed spatial-VAE, effectively learns latent representations that disentangle image rotation and translation from content and improves reconstruction over standard VAEs on several benchmark datasets, including applications to modeling continuous 2-D views of proteins from single particle electron microscopy and galaxies in astronomical images.
In this paper, we propose a novel implicit semantic data augmentation (ISDA) approach to complement traditional augmentation techniques like flipping, translation or rotation. Our work is motivated by the intriguing property that deep networks are surprisingly good at linearizing features, such that certain directions in the deep feature space correspond to meaningful semantic transformations, e.g., adding sunglasses or changing backgrounds. As a consequence, translating training samples along many semantic directions in the feature space can effectively augment the dataset to improve generalization. To implement this idea effectively and efficiently, we first perform an online estimate of the covariance matrix of deep features for each class, which captures the intra-class semantic variations. Then random vectors are drawn from a zero-mean normal distribution with the estimated covariance to augment the training data in that class. Importantly, instead of augmenting the samples explicitly, we can directly minimize an upper bound of the expected cross-entropy (CE) loss on the augmented training set, leading to a highly efficient algorithm. In fact, we show that the proposed ISDA amounts to minimizing a novel robust CE loss, which adds negligible extra computational cost to a normal training procedure. Although being simple, ISDA consistently improves the generalization performance of popular deep models (ResNets and DenseNets) on a variety of datasets, e.g., CIFAR-10, CIFAR-100 and ImageNet. Code for reproducing our results is available at https://github.com/blackfeather-wang/ISDA-for-Deep-Networks.
While deep neural networks excel in solving visual recognition tasks, they require significant effort to find hyperparameters that make them work optimally. Hyperparameter Optimization (HPO) approaches have automated the process of finding good hyperparameters but they do not adapt to a given task (task-agnostic), making them computationally inefficient. To reduce HPO time, we present HyperSTAR (System for Task Aware Hyperparameter Recommendation), a task-aware method to warm-start HPO for deep neural networks. HyperSTAR ranks and recommends hyperparameters by predicting their performance conditioned on a joint dataset-hyperparameter space. It learns a dataset (task) representation along with the performance predictor directly from raw images in an end-to-end fashion. The recommendations, when integrated with an existing HPO method, make it task-aware and significantly reduce the time to achieve optimal performance. We conduct extensive experiments on 10 publicly available large-scale image classification datasets over two different network architectures, validating that HyperSTAR evaluates 50% less configurations to achieve the best performance compared to existing methods. We further demonstrate that HyperSTAR makes Hyperband (HB) task-aware, achieving the optimal accuracy in just 25% of the budget required by both vanilla HB and Bayesian Optimized HB~(BOHB).
Matching two different sets of items, called heterogeneous set-to-set matching problem, has recently received attention as a promising problem. The difficulties are to extract features to match a correct pair of different sets and also preserve two types of exchangeability required for set-to-set matching: the pair of sets, as well as the items in each set, should be exchangeable. In this study, we propose a novel deep learning architecture to address the abovementioned difficulties and also an efficient training framework for set-to-set matching. We evaluate the methods through experiments based on two industrial applications: fashion set recommendation and group re-identification. In these experiments, we show that the proposed method provides significant improvements and results compared with the state-of-the-art methods, thereby validating our architecture for the heterogeneous set matching problem.