Do you want to publish a course? Click here

Chemical abundance analysis of 13 southern symbiotic giants from high-resolution spectra at ~1.56 mu{}m

53   0   0.0 ( 0 )
 Added by Cezary Galan
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Symbiotic stars (SySt) are binaries composed of a star in the later stages of evolution and a stellar remnant. The enhanced mass-loss from the giant drives interacting mass exchange and makes these systems laboratories for understanding binary evolution. Studies of the chemical compositions are particularly useful since this parameter has strong impact on the evolutionary path. The previous paper in this series presented photospheric abundances for 24 giants in S-type SySt enabling a first statistical analysis. Here we present results for an additional sample of 13 giants. The aims are to improve statistics of chemical composition involved in the evolution of SySt, to study evolutionary status, mass transfer and to interpret this in terms of Galactic populations. High-resolution, near-IR spectra are used, employing the spectrum synthesis method in a classical approach, to obtain abundances of CNO and elements around the iron peak (Fe, Ti, Ni). Low-resolution spectra in the region around the Ca II triplet were used for spectral classification. The metallicities obtained cover a wide range with a maximum around ~-0.2 dex. The enrichment in the 14N isotope indicates that these giants have experienced the first dredge-up. Relative O and Fe abundances indicate that most SySt belong to the Galactic disc; however, in a few cases, the extended thick-disc/halo is suggested. Difficult to explain, relatively high Ti abundances can indicate that adopted microturbulent velocities were too small by ~0.2-0.3 km/s. The revised spectral types for V2905 Sgr, and WRAY 17-89 are M3 and M6.5, respectively.



rate research

Read More

The study of symbiotic systems is of considerable importance in our understanding of binary system stellar evolution in systems where mass loss or transfer takes place. Elemental abundances are of special significance since they can be used to track mass exchange. However, there are few symbiotic giants for which the abundances are fairly well determined. Here we present for the first time a detailed analysis of the chemical composition for the giants in the RW Hya and SY Mus systems. The analysis is based on high resolution (R 50000), high S/N, near-IR spectra. Spectrum synthesis employing standard LTE analysis and atmosphere models was used to obtain photospheric abundances of CNO and elements around the iron peak (Sc, Ti, Fe, and Ni). Our analysis reveals a significantly sub-solar metallicity, [Fe/H]-0.75}, for the RW Hya giant confirming its membership in the Galactic halo population and a near-solar metallicity for the SY Mus giant. The very low 12C/13C isotopic ratios, 6-10, derived for both objects indicate that the giants have experienced the first dredge-up
Symbiotic stars are the long period, binary systems of strongly interacting stars at the final stages of evolution which can be useful tool to understand the chemical evolution of the Galaxy and the formation of stellar populations. Knowledge of the chemical composition of the symbiotic giants is essential to advancing our understanding of these issues but unfortunately reliably determinations exist only in a few cases. We perform a program for detailed chemical composition analysis in over 30 symbiotic giants, based on the high resolution, near-IR spectra, obtained with Phoenix/Gemini South spectrometer. The methods of the standard LTE analysis is used to obtain photospheric abundances of CNO and elements around iron peak. Here we present results obtained for four objects: RW Hya, SY Mus, BX Mon, and AE Ara. Our analysis revealed a significantly sub-solar metallicity (Me/H ~ -0.75) for RW Hya, a slightly sub-solar metallicities (Me/H ~ 0.2-0.3) in BX Mon and AE Ara, and a near-solar metallicity in SY Mus. 12C/13C isotopic ratios are low in all cases, ranging from ~6 to ~10, and indicate that the giants have experienced the first dredge-up.
Knowledge of the elemental abundances of symbiotic giants is essential to address the role of chemical composition in the evolution of symbiotic binaries, to map their parent population, and to trace their mass transfer history. However, there are few symbiotic giants for which the photospheric abundances are fairly well determined. This is the second in a series of papers on chemical composition of symbiotic giants determined from high-resolution (R ~ 50000) near-IR spectra. Results are presented for the late-type giant star in the AE Ara, BX Mon, KX TrA, and CL Sco systems. Spectrum synthesis employing standard local thermal equilibrium (LTE) analysis and stellar atmosphere models were used to obtain photospheric abundances of CNO and elements around the iron peak (Sc, Ti, Fe, and Ni). Our analysis resulted in sub-solar metallicities in BX Mon, KX TrA, and CL Sco by [Fe/H] ~ -0.3 or -0.5 depending on the value of microturbulence. AE Ara shows metallicity closer to solar by ~0.2 dex. The enrichment in 14N isotope found in all these objects indicates that the giants have experienced the first dredge-up. In the case of BX Mon first dredge-up is also confirmed by the low 12C/13C isotopic ratio of ~8.
The [Sr/Ba] and [Y/Ba] scatter observed in some galactic halo stars that are very metal-poor stars and in a few individual stars of the oldest known Milky Way globular cluster NGC 6522,have been interpreted as evidence of early enrichment by massive fast-rotating stars (spinstars). Because NGC 6522 is a bulge globular cluster, the suggestion was that not only the very-metal poor halo stars, but also bulge stars at [Fe/H]~-1 could be used as probes of the stellar nucleosynthesis signatures from the earlier generations of massive stars, but at much higher metallicity. For the bulge the suggestions were based on early spectra available for stars in NGC 6522, with a medium resolution of R~22,000 and a moderate signal-to-noise ratio. The main purpose of this study is to re-analyse the NGC 6522 stars previously reported using new high-resolution (R~45,000) and high signal-to-noise spectra (S/N>100). We aim at re-deriving their stellar parameters and elemental ratios, in particular the abundances of the neutron-capture s-process-dominated elements such as Sr, Y, Zr, La, and Ba, and of the r-element Eu. High-resolution spectra of four giants belonging to the bulge globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVESconfiguration. The spectroscopic parameters were derived based on the excitation and ionization equilibrium of ion{Fe}{I} and ion{Fe}{II}. Our analysis confirms a metallicity [Fe/H] = -0.95+-0.15 for NGC 6522, and the overabundance of the studied stars in Eu (with +~0.2 < [Eu/Fe] < +~0.4) and alpha-elements O and Mg. The neutron-capture s-element-dominated Sr, Y, Zr, Ba, La now show less pronounced variations from star to star. Enhancements are in the range 0.0 < [Sr/Fe] < +0.4, +0.23 < [Y/Fe] < +0.43, 0.0 < [Zr/Fe] < +0.4, 0.0 < [La/Fe] < +0.35,and 0.05 < [Ba/Fe] < +0.55.
The globular cluster HP~1 is projected at only 3.33 degrees from the Galactic center. Together with its distance, this makes it one of the most central globular clusters in the Milky Way. It has a blue horizontal branch (BHB) and a metallicity of [Fe/H]~-1.0. This means that it probably is one of the oldest objects in the Galaxy. Abundance ratios can reveal the nucleosynthesis pattern of the first stars as well as the early chemical enrichment and early formation of stellar populations. High-resolution spectra obtained for six stars were analyzed to derive the abundances of the light elements C, N, O, Na, and Al, the alpha-elements Mg, Si, Ca, and Ti, and the heavy elements Sr, Y , Zr, Ba, La, and Eu.} High-resolution spectra of six red giants that are confirmed members of the bulge globular cluster HP~1 were obtained with the 8m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. The spectroscopic parameter derivation was based on the excitation and ionization equilibrium of FeI and FeII. We confirm a mean metallicity of [Fe/H] = -1.06~0.10, by adding the two stars that were previously analyzed in HP~1. The alpha-elements O and Mg are enhanced by about +0.3<[O,Mg/Fe]<+0.5 dex, Si is moderately enhanced with +0.15<[Si/Fe]<+0.35dex, while Ca and Ti show lower values of -0.04<[Ca,Ti/Fe]<+0.28dex. The r-element Eu is also enhanced with [Eu/Fe]~+0.4, which together with O and Mg is indicative of early enrichment by type II supernovae. Na and Al are low, but it is unclear if Na-O are anticorrelated. The heavy elements are moderately enhanced, with -0.20<[La/Fe]<+0.43dex and 0.0<[Ba/Fe]<+0.75~dex, which is compatible with r-process formation. The spread in Y, Zr, Ba, and La abundances, on the other hand, appears to be compatible with the spinstar scenario or other additional mechanisms such as the weak r-process.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا