Do you want to publish a course? Click here

Multiple supersonic phase fronts launched at a complex-oxide hetero-interface

85   0   0.0 ( 0 )
 Added by Michael F\\\"orst
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Selective optical excitation of a substrate lattice can drive phase changes across hetero-interfaces. This phenomenon is a non-equilibrium analogue of static strain control in heterostructures and may lead to new applications in optically controlled phase change devices. Here, we make use of time-resolved non-resonant and resonant x-ray diffraction to clarify the underlying physics, and to separate different microscopic degrees of freedom in space and time. We measure the dynamics of the lattice and that of the charge disproportionation in NdNiO3, when an insulator-metal transition is driven by coherent lattice distortions in the LaAlO3 substrate. We find that charge redistribution propagates at supersonic speeds from the interface into the NdNiO3 film, followed by a sonic lattice wave. When combined with measurements of magnetic disordering and of the metal-insulator transition, these results establish a hierarchy of events for ultrafast control at complex oxide hetero-interfaces.



rate research

Read More

Static strain in complex oxide heterostructures has been extensively used to engineer electronic and magnetic properties at equilibrium. In the same spirit, deformations of the crystal lattice with light may be used to achieve functional control across hetero-interfaces dynamically. Here, by exciting large amplitude infrared-active vibrations in a LaAlO3 substrate we induce magnetic order melting in a NdNiO3 film across a hetero-interface. Femtosecond Resonant Soft X-ray Diffraction is used to determine the spatial and temporal evolution of the magnetic disordering. We observe a magnetic melt front that grows from the substrate interface into the film, at a speed that suggests electronically driven propagation. Light control and ultrafast phase front propagation at hetero-interfaces may lead to new opportunities in optomagnetism, for example by driving domain wall motion to transport information across suitably designed devices.
Atomically flat interfaces between ternary oxides have chemically different variants, depending on the terminating lattice planes of both oxides. Electronic properties change with the interface termination which affects, for instance, charge accumulation and magnetic interactions at the interface. Well-defined terminations have yet rarely been achieved for oxides of ABO3 type (with metals A, B). Here, we report on a strategy of thin film growth and interface characterization applied to fabricate the La0.7Sr0.3MnO3-SrRuO3 interface with controlled termination. Ultra-strong antiferromagnetic coupling between the ferromagnets occurs at the MnO2-SrO interface, but not for the other termination, in agreement with density functional calculations. X-ray magnetic circular dichroism measurements reveal coupled reversal of Mn and Ru magnetic moments at the MnO2-SrO interface. Our results demonstrate termination control of magnetic coupling across a complex oxide interface and provide a pathway for theoretical and experimental explorations of novel electronic interface states with engineered magnetic properties.
Complex oxide interfaces are a promising platform for studying a wide array of correlated electron phenomena in low-dimensions, including magnetism and superconductivity. The microscopic origin of these phenomena in complex oxide interfaces remains an open question. Here we investigate for the first time the magnetic properties of semi-insulating NdTiO$_3$/SrTiO$_3$ (NTO/STO) interfaces and present the first milli-Kelvin study of NTO/STO. The magnetoresistance (MR) reveals signatures of local ferromagnetic order and of spin-dependent thermally-activated transport, which are described quantitatively by a simple phenomenological model. We discuss possible origins of the interfacial ferromagnetism. In addition, the MR also shows transient hysteretic features on a timescale of ~10-100 seconds. We demonstrate that these are consistent with an extrinsic magneto-thermal origin, which may have been misinterpreted in previous reports of magnetism in STO-based oxide interfaces. The existence of these two MR regimes (steady-state and transient) highlights the importance of time-dependent measurements for distinguishing signatures of ferromagnetism from other effects that can produce hysteresis at low temperatures.
Charge carrier injection performed in Pr0.7Ca0.3MnO3 (PCMO) hetero-structure junctions exhibits stable without electric fields and dramatic changes in both resistances and interface barriers, which are entirely different from behaviors of semiconductor devices. Disappearance and reversion of interface barriers suggest that the adjustable resistance switching of such hetero-structure oxide devices should associate with motion of charge carriers across interfaces. The results suggested that injected carriers should be still staying in devices and resulted in changes in properties, which guided to a carrier self-trapping and releasing picture in strongly correlated electronic framework. Observations in PCMO and oxygen deficient CeO2 devices show that oxides as functional materials could be used in microelectronics with some novel properties, in which interface is very important.
Geometric phases in condensed matter play a central role in topological transport phenomena such as the quantum, spin and anomalous Hall effect (AHE). In contrast to the quantum Hall effect - which is characterized by a topological invariant and robust against perturbations - the AHE depends on the Berry curvature of occupied bands at the Fermi level and is therefore highly sensitive to subtle changes in the band structure. A unique platform for its manipulation is provided by transition metal oxide heterostructures, where engineering of emergent electrodynamics becomes possible at atomically sharp interfaces. We demonstrate that the Berry curvature and its corresponding vector potential can be manipulated by interface engineering of the correlated itinerant ferromagnet SrRuO$_3$ (SRO). Measurements of the AHE reveal the presence of two interface-tunable spin-polarized conduction channels. Using theoretical calculations, we show that the tunability of the AHE at SRO interfaces arises from the competition between two topologically non-trivial bands. Our results demonstrate how reconstructions at oxide interfaces can be used to control emergent electrodynamics on a nanometer-scale, opening new routes towards spintronics and topological electronics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا