Do you want to publish a course? Click here

Collective electronic excitation in a trapped ensemble of photogenerated dipolar excitons and free holes revealed by inelastic light scattering

191   0   0.0 ( 0 )
 Added by Ursula Wurstbauer
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Photogenerated excitonic ensembles confined in coupled GaAs quantum wells are probed by a complementary approach of emission spectroscopy and resonant inelastic light scattering. Lateral electrostatic trap geometries are used to create dense systems of spatially indirect excitons and excess holes with similar densities in the order of 10$^{11}$ cm$^{-2}$. Inelastic light scattering spectra reveal a very sharp low-lying collective mode that is identified at an energy of 0.44 meV and a FWHM of only ~50 $mu$eV. This mode is interpreted as a plasmon excitation of the excess hole system coupled to the photogenerated indirect excitons. The emission energy of the indirect excitons shifts under the application of a perpendicular applied electric field with the quantum-confined Stark effect unperturbed from the presence of free charge carriers. Our results illustrate the potential of studying low-lying collective excitations in photogenerated exciton systems to explore the many-body phase diagram, related phase transitions, and interaction physics.



rate research

Read More

We present a general method for obtaining the exact static solutions and collective excitation frequencies of a trapped Bose-Einstein condensate (BEC) with dipolar atomic interactions in the Thomas-Fermi regime. The method incorporates analytic expressions for the dipolar potential of an arbitrary polynomial density profile, thereby reducing the problem of handling non-local dipolar interactions to the solution of algebraic equations. We comprehensively map out the static solutions and excitation modes, including non-cylindrically symmetric traps, and also the case of negative scattering length where dipolar interactions stabilize an otherwise unstable condensate. The dynamical stability of the excitation modes gives insight into the onset of collapse of a dipolar BEC. We find that global collapse is consistently mediated by an anisotropic quadrupolar collective mode, although there are two trapping regimes in which the BEC is stable against quadrupole fluctuations even as the ratio of the dipolar to s-wave interactions becomes infinite. Motivated by the possibility of fragmented BEC in a dipolar Bose gas due to the partially attractive interactions, we pay special attention to the scissors modes, which can provide a signature of superfluidity, and identify a long-range restoring force which is peculiar to dipolar systems. As part of the supporting material for this paper we provide the computer program used to make the calculations, including a graphical user interface.
We study the spectrum of elementary excitations of a dipolar Bose gas in a three-dimensional anisotropic trap across the superfluid-supersolid phase transition. Theoretically, we show that, when entering the supersolid phase, two distinct excitation branches appear, respectively associated with dominantly crystal and superfluid excitations. These results confirm infinite-system predictions, showing that finite-size effects play only a small qualitative role, and connect the two branches to the simultaneous occurrence of crystal and superfluid orders. Experimentally, we probe compressional excitations in an Er quantum gas across the phase diagram. While in the Bose-Einstein condensate regime the system exhibits an ordinary quadrupole oscillation, in the supersolid regime we observe a striking two-frequency response of the system, related to the two spontaneously broken symmetries.
We investigate the transport of dipolar indirect excitons along the growth plane of polar (Al,Ga)N/GaN quantum well structures by means of spatially- and time-resolved photoluminescence spectroscopy. The transport in these strongly disordered quantum wells is activated by dipole-dipole repulsion. The latter induces an emission blue shift that increases linearly with exciton density, whereas the radiative recombination rate increases exponentially. Under continuous, localized excitation, we measure a continuous red shift of the emission, as excitons propagate away from the excitation spot. This shift corresponds to a steady-state gradient of exciton density, measured over several tens of micrometers. Time-resolved micro-photoluminescence experiments provide information on the dynamics of recombination and transport of dipolar excitons. We account for the ensemble of experimental results by solving the nonlinear drift-diffusion equation. Quantitative analysis suggests that in such structures, exciton propagation on the scale of 10 to 20 microns is mainly driven by diffusion, rather than by drift, due to the strong disorder and the presence of nonradiative defects. Secondary exciton creation, most probably by the intense higher-energy luminescence, guided along the sample plane, is shown to contribute to the exciton emission pattern on the scale up to 100 microns. The exciton propagation length is strongly temperature dependent, the emission being quenched beyond a critical distance governed by nonradiative recombination.
Atomistic van der Waals heterostacks are ideal systems for high-temperature exciton condensation because of large exciton binding energies and long lifetimes. Charge transport and electron energy-loss spectroscopy showed first evidence of excitonic many-body states in such two-dimensional materials. Pure optical studies, the most obvious way to access the phase diagram of photogenerated excitons have been elusive. We observe several criticalities in photogenerated exciton ensembles hosted in MoSe2-WSe2 heterostacks with respect to photoluminescence intensity, linewidth, and temporal coherence pointing towards the transition to a coherent quantum state. For this state, the occupation is 100 percent and the exciton diffusion length is increased. The phenomena survive above 10 kelvin, consistent with the predicted critical condensation temperature. Our study provides a first phase-diagram of many-body interlayer exciton states including Bose Einstein condensation.
124 - N. Fabbri , C. Fort , M. Modugno 2015
In ultracold atoms settings, inelastic light scattering is a preeminent technique to reveal static and dynamic properties at nonzero momentum. In this work, we investigate an array of one-dimensional trapped Bose gases, by measuring both the energy and the momentum imparted to the system via light scattering experiments. The measurements are performed in the weak perturbation regime, where these two quantities - the energy and momentum transferred - are expected to be related to the dynamical structure factor of the system. We discuss this relation, with special attention to the role of in-trap dynamics on the transferred momentum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا