Do you want to publish a course? Click here

Energy and momentum transfer in one-dimensional trapped gases by stimulated light scattering

115   0   0.0 ( 0 )
 Added by Nicole Fabbri
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In ultracold atoms settings, inelastic light scattering is a preeminent technique to reveal static and dynamic properties at nonzero momentum. In this work, we investigate an array of one-dimensional trapped Bose gases, by measuring both the energy and the momentum imparted to the system via light scattering experiments. The measurements are performed in the weak perturbation regime, where these two quantities - the energy and momentum transferred - are expected to be related to the dynamical structure factor of the system. We discuss this relation, with special attention to the role of in-trap dynamics on the transferred momentum.



rate research

Read More

We present a new theoretical framework for describing an impurity in a trapped Bose system in one spatial dimension. The theory handles any external confinement, arbitrary mass ratios, and a weak interaction may be included between the Bose particles. To demonstrate our technique, we calculate the ground state energy and properties of a sample system with eight bosons and find an excellent agreement with numerically exact results. Our theory can thus provide definite predictions for experiments in cold atomic gases.
We calculate the density profiles of a trapped spin-imbalanced Fermi gas with attractive interactions in a one-dimensional optical lattice, using both the local density approximation (LDA) and density matrix renormalization group (DMRG) simulations. Based on the exact equation of state obtained by Bethe ansatz, LDA predicts that the gas phase-separates into shells with a partially polarized core and fully paired wings, where the latter occurs below a critical spin polarization. This behavior is also seen in numerically exact DMRG calculations at sufficiently large particle numbers. Unlike the continuum case, we show that the critical polarization is a non monotonic function of the interaction strength and vanishes in the limit of large interactions.
We use unbiased computational methods to elucidate the onset and properties of pair superfluidity in two-species fermionic and bosonic systems with onsite interspecies attraction loaded in one-dimensional optical lattice. We compare results from quantum Monte Carlo (QMC) and density matrix renormalization group (DMRG), emphasizing the one-to-one correspondence between the Drude weight tensor, calculated with DMRG, and the various winding numbers extracted from the QMC. Our results show that, for any nonvanishing attractive interaction, pairs form and are the sole contributors to superfluidity, there are no individual contributions due to the separate species. For weak attraction, the pair size diverges exponentially, i.e. Bardeen-Cooper-Schrieffer (BCS) pairing requiring huge systems to bring out the pair-only nature of the superfluid. This crucial property is largely overlooked in many studies, thereby misinterpreting the origin and nature of the superfluid. We compare and contrast this with the repulsive case and show that the behavior is very different, contradicting previous claims about drag superfluidity and the symmetry of properties for attractive and repulsive interactions. Finally, our results show that the situation is similar for soft core bosons: superfluidity is due only to pairs, even for the smallest attractive interaction strength compatible with the largest system sizes that we could attain.
We study the ground state of a one-dimensional (1D) trapped Bose gas with two mobile impurity particles. To investigate this set-up, we develop a variational procedure in which the coordinates of the impurity particles are slow-like variables. We validate our method using the exact results obtained for small systems. Then, we discuss energies and pair densities for systems that contain of the order of one hundred atoms. We show that bosonic non-interacting impurities cluster. To explain this clustering, we calculate and discuss induced impurity-impurity potentials in a harmonic trap. Further, we compute the force between static impurities in a ring ({it {`a} la} the Casimir force), and contrast the two effective potentials: the one obtained from the mean-field approximation, and the one due to the one-phonon exchange. Our formalism and findings are important for understanding (beyond the polaron model) the physics of modern 1D cold-atom systems with more than one impurity.
One-dimensional spinor gases with strong delta interaction fermionize and form a spin chain. The spatial degrees of freedom of this atom chain can be described by a mapping to spinless noninteracting fermions and the spin degrees of freedom are described by a spin-chain model with nearest-neighbor interactions. Here, we compute momentum and occupation-number distributions of up to 16 strongly interacting spinor fermions and bosons as a function of their spin imbalance, the strength of an externally applied magnetic field gradient, the length of their spin, and for different excited states of the multiplet. We show that the ground-state momentum distributions resemble those of the corresponding noninteracting systems, apart from flat background distributions, which extend to high momenta. Moreover, we show that the spin order of the spin chain---in particular antiferromagnetic spin order---may be deduced from the momentum and occupation-number distributions of the system. Finally, we present efficient numerical methods for the calculation of the single-particle densities and one-body density matrix elements and of the local exchange coefficients of the spin chain for large systems containing more than 20 strongly interacting particles in arbitrary confining potentials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا