Do you want to publish a course? Click here

The 1.1 mm Continuum Survey of the Small Magellanic Cloud: Physical Properties and Evolution of the Dust-selected Clouds

70   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The first 1.1 mm continuum survey toward the Small Magellanic Cloud (SMC) was performed using the AzTEC instrument installed on the ASTE 10-m telescope. This survey covered 4.5 deg$^2$ of the SMC with $1sigma$ noise levels of $5-12$ mJy beam$^{-1}$, and 44 extended objects were identified. The 1.1 mm extended emission has good spatial correlation with $Herschel$ 160 $mathrm{mu m}$, indicating that the origin of the 1.1 mm extended emission is thermal emission from a cold dust component. We estimated physical properties using the 1.1 mm and filtered $Herschel$ data (100, 160, 250, 350, and 500 $mathrm{mu m}$). The 1.1 mm objects show dust temperatures of $17-45$ K and gas masses of $4times10^3-3times10^5~M_odot$, assuming single-temperature thermal emission from the cold dust with an emissivity index, $beta$, of 1.2 and a gas-to-dust ratio of 1000. These physical properties are very similar to those of giant molecular clouds (GMCs) in our galaxy and the Large Magellanic Cloud. The 1.1 mm objects also displayed good spatial correlation with the $Spitzer$ 24 $mathrm{mu m}$ and CO emission, suggesting that the 1.1 mm objects trace the dense gas regions as sites of massive star formation. The dust temperature of the 1.1 mm objects also demonstrated good correlation with the 24 $mathrm{mu m}$ flux connected to massive star formation. This supports the hypothesis that the heating source of the cold dust is mainly local star-formation activity in the 1.1 mm objects. The classification of the 1.1 mm objects based on the existence of star-formation activity reveals the differences in the dust temperature, gas mass, and radius, which reflects the evolution sequence of GMCs.



rate research

Read More

We present a high-sensitivity ($1sigma<1.6~mathrm{mJy~beam^{-1}}$) continuum observation in a 343 arcmin$^2$ area of the northeast region in the Small Magellanic Cloud at a wavelength of 1.1 mm, conducted using the AzTEC instrument on the ASTE telescope. In the observed region, we identified 20 objects by contouring $10sigma$ emission. Through spectral energy distribution (SED) analysis using 1.1 mm, $Herschel$, and $Spitzer$ data, we estimated the gas masses of $5times 10^3-7times 10^4~mathrm{M_odot}$, assuming a gas-to-dust ratio of 1000. Dust temperature and the index of emissivity were also estimated as $18-33$ K and $0.9-1.9$, respectively, which are consistent with previous low resolution studies. The relation between dust temperature and the index of emissivity shows a weak negative linear correlation. We also investigated five CO-detected dust-selected clouds in detail. The total gas masses were comparable to those estimated from the Mopra CO data, indicating that the assumed gas-to-dust ratio of 1000 and the $X_mathrm{CO}$ factor of $1times10^{21}~mathrm{cm^{-2}~(K~km~s^{-1})^{-1}}$, with uncertainties of a factor of 2, are reliable for the estimation of the gas masses of molecular or dust-selected clouds. Dust column density showed good spatial correlation with CO emission, except for an object that associates with bright young stellar objects. The $8~mathrm{mu m}$ filamentary and clumpy structures also showed similar spatial distribution with the CO emission and dust column density, supporting the fact that polycyclic aromatic hydrocarbon emissions arise from the surfaces of dense gas and dust clouds.
78 - D. Paradis , C. Meny , M. Juvela 2019
In this present analysis we investigate the dust properties associated with the different gas phases (including the ionized phase this time) of the LMC molecular clouds at 1$^{prime}$ angular resolution (four times greater than a previous analysis) and with a larger spectral coverage range thanks to Herschel data. We also ensure the robustness of our results in the framework of various dust models. We performed a decomposition of the dust emission in the infrared (3.6 $mic$ to 500 $mic$) associated with the atomic, molecular, and ionized gas phases in the molecular clouds of the LMC. The resulting spectral energy distributions were fitted with four distinct dust models. We then analyzed the model parameters such as the intensity of the radiation field and the relative dust abundances, as well as the slope of the emission spectra at long wavelengths. This work allows dust models to be compared with infrared data in various environments for the first time, which reveals important differences between the models at short wavelengths in terms of data fitting (mainly in the PAH bands). In addition, this analysis points out distinct results according to the gas phases, such as dust composition directly affecting the dust temperature and the dust emissivity in the submm, and different dust emission in the near-infrared (NIR). We observe direct evidence of dust property evolution from the diffuse to the dense medium in a large sample of molecular clouds in the LMC. In addition, the differences in the dust component abundances between the gas phases could indicate different origins of grain formation. We also point out the presence of a NIR-continuum in all gas phases, with an enhancement in the ionized gas. We favor the hypothesis of an additional dust component as the carrier of this continuum.
We present two new radio continuum images from the Australian Square Kilometre Array Pathfinder (ASKAP) survey in the direction of the Small Magellanic Cloud (SMC). These images are part of the Evolutionary Map of the Universe (EMU) Early Science Project (ESP) survey of the Small and Large Magellanic Clouds. The two new source lists produced from these images contain radio continuum sources observed at 960 MHz (4489 sources) and 1320 MHz (5954 sources) with a bandwidth of 192 MHz and beam sizes of 30.0x30.0 and 16.3x15.1, respectively. The median Root Mean Squared (RMS) noise values are 186$mu$Jy beam$^{-1}$ (960 MHz) and 165$mu$Jy beam$^{-1}$ (1320 MHz). To create point source catalogues, we use these two source lists, together with the previously published Molonglo Observatory Synthesis Telescope (MOST) and the Australia Telescope Compact Array (ATCA) point source catalogues to estimate spectral indices for the whole population of radio point sources found in the survey region. Combining our ASKAP catalogues with these radio continuum surveys, we found 7736 point-like sources in common over an area of 30 deg$^2$. In addition, we report the detection of two new, low surface brightness supernova remnant candidates in the SMC. The high sensitivity of the new ASKAP ESP survey also enabled us to detect the bright end of the SMC planetary nebula sample, with 22 out of 102 optically known planetary nebulae showing point-like radio continuum emission. Lastly, we present several morphologically interesting background radio galaxies.
70 - M. L. Enoch 2005
We have completed a 1.1 mm continuum survey of 7.5 sq deg of the Perseus Molecular Cloud using Bolocam at the Caltech Submillimeter Observatory. This represents the largest millimeter or submillimeter continuum map of Perseus to date. Our map covers more than 30,000 31 (FWHM) resolution elements to a 1 sigma RMS of 15 mJy/beam. We detect a total of 122 cores above a 5 sigma point source mass detection limit of 0.18 M_sun, assuming a dust temperature of 10 K, 60 of which are new millimeter or submillimeter detections. The 1.1 mm mass function is consistent with a broken power law of slope -1.3 (0.5 M_sun<M<2.5 M_sun) and -2.6 (M>2.5 M_sun), similar to the local initial mass function slope. No more than 5% of the total cloud mass is contained in discrete 1.1 mm cores, which account for a total mass of 285 M_sun. We suggest an extinction threshold for millimeter cores of Av~5 mag, based on our calculation of the probability of finding a 1.1 mm core as a function of Av. Much of the cloud is devoid of compact millimeter emission; despite the significantly greater area covered compared to previous surveys, only 5-10 of the newly identified sources lie outside previously observed areas. The two-point correlation function confirms that dense cores in the cloud are highly structured, with significant clustering on scales as large as 2e5 AU. These 1.1 mm results, especially when combined with recently acquired c2d Spitzer Legacy data, will provide a census of dense cores and protostars in Perseus and improve our understanding of the earliest stages of star formation in molecular clouds.
In order to understand the evolution of the interstellar medium (ISM) of a galaxy, we have analysed the gas and dust budget of the Small Magellanic Cloud (SMC). Using the Spitzer Space Telescope, we measured the integrated gas mass-loss rate across asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the SMC, and obtained a rate of 1.4x10^-3 Msun yr-1. This is much smaller than the estimated gas ejection rate from type II supernovae (SNe) (2-4x10^-2 Msun yr-1). The SMC underwent a an increase in starformation rate in the last 12 Myrs, and consequently the galaxy has a relatively high SN rate at present. Thus, SNe are more important gas sources than AGB stars in the SMC. The total gas input from stellar sources into the ISM is 2-4x10^-2 Msun yr-1. This is slightly smaller than the ISM gas consumed by starformation (~8x10^-2 Msun yr-1). Starformation in the SMC relies on a gas reservoir in the ISM, but eventually the starformation rate will decline in this galaxy, unless gas infalls into the ISM from an external source. The dust injection rate from AGB and RSG candidates is 1x10^-5 Msun yr-1. Dust injection from SNe is in the range of 0.2--11x10^-4 Msun yr-1, although the SN contribution is rather uncertain. Stellar sources could be important for ISM dust (3x10^5 Msun yr-1) in the SMC, if the dust lifetime is about 1.4 Gyrs. We found that the presence of poly-aromatic hydrocarbons (PAHs) in the ISM cannot be explained entirely by carbon-rich AGB stars. Carbon-rich AGB stars could inject only 7x10^-9 Msun yr-1 of PAHs at most, which could contribute up to 100 Msun of PAHs in the lifetime of a PAH. The estimated PAH mass of 1800 Msun in the SMC can not be explained. Additional PAH sources, or ISM reprocessing should be needed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا