No Arabic abstract
Image segmentation has many applications which range from machine learning to medical diagnosis. In this paper, we propose a framework for the segmentation of images based on super-pixels and algorithms for community identification in graphs. The super-pixel pre-segmentation step reduces the number of nodes in the graph, rendering the method the ability to process large images. Moreover, community detection algorithms provide more accurate segmentation than traditional approaches, such as those based on spectral graph partition. We also compare our method with two algorithms: a) the graph-based approach by Felzenszwalb and Huttenlocher and b) the contour-based method by Arbelaez. Results have shown that our method provides more precise segmentation and is faster than both of them.
In the social media, there are a large amount of potential zombie accounts which may has negative impact on the public opinion. In tradition, PageRank algorithm is used to detect zombie accounts. However, problems such as it requires a large RAM to store adjacent matrix or adjacent list and the value of importance may approximately to zero for large graph exist. To solve the first problem, since the structure of social media makes the graph divisible, we conducted a community detection algorithm Louvain to decompose the whole graph into 1,002 subgraphs. The modularity of 0.58 shows the result is effective. To solve the second problem, we performed the uneven assignation PageRank algorithm to calculate the importance of node in each community. Then, a threshold is set to distinguish the zombie account and normal accounts. The result shows that about 20% accounts in the dataset are zombie accounts and they center in tier-one cities in China such as Beijing, Shanghai, and Guangzhou. In the future, a classification algorithm with semi-supervised learning can be used to detect zombie accounts.
Prostate cancer is the most common cancer among US men. However, prostate imaging is still challenging despite the advances in multi-parametric Magnetic Resonance Imaging (MRI), which provides both morphologic and functional information pertaining to the pathological regions. Along with whole prostate gland segmentation, distinguishing between the Central Gland (CG) and Peripheral Zone (PZ) can guide towards differential diagnosis, since the frequency and severity of tumors differ in these regions; however, their boundary is often weak and fuzzy. This work presents a preliminary study on Deep Learning to automatically delineate the CG and PZ, aiming at evaluating the generalization ability of Convolutional Neural Networks (CNNs) on two multi-centric MRI prostate datasets. Especially, we compared three CNN-based architectures: SegNet, U-Net, and pix2pix. In such a context, the segmentation performances achieved with/without pre-training were compared in 4-fold cross-validation. In general, U-Net outperforms the other methods, especially when training and testing are performed on multiple datasets.
We exam various geometric active contour methods for radar image segmentation. Due to special properties of radar images, we propose our new model based on modified Chan-Vese functional. Our method is efficient in separating non-meteorological noises from meteorological images.
We propose a saliency-based, multi-target detection and segmentation framework for multi-aspect, semi-coherent imagery formed from circular-scan, synthetic-aperture sonar (CSAS). Our framework relies on a multi-branch, convolutional encoder-decoder network (MB-CEDN). The encoder portion extracts features from one or more CSAS images of the targets. These features are then split off and fed into multiple decoders that perform pixel-level classification on the extracted features to roughly mask the target in an unsupervised-trained manner and detect foreground and background pixels in a supervised-trained manner. Each of these target-detection estimates provide different perspectives as to what constitute a target. These opinions are cascaded into a deep-parsing network to model contextual and spatial constraints that help isolate targets better than either solution estimate alone. We evaluate our framework using real-world CSAS data with five broad target classes. Since we are the first to consider both CSAS target detection and segmentation, we adapt existing image and video-processing network topologies from the literature for comparative purposes. We show that our framework outperforms supervised deep networks. It greatly outperforms state-of-the-art unsupervised approaches for diverse target and seafloor types.
In the deep metric learning approach to image segmentation, a convolutional net densely generates feature vectors at the pixels of an image. Pairs of feature vectors are trained to be similar or different, depending on whether the corresponding pixels belong to same or different ground truth segments. To segment a new image, the feature vectors are computed and clustered. Both empirically and theoretically, it is unclear whether or when deep metric learning is superior to the more conventional approach of directly predicting an affinity graph with a convolutional net. We compare the two approaches using brain images from serial section electron microscopy images, which constitute an especially challenging example of instance segmentation. We first show that seed-based postprocessing of the feature vectors, as originally proposed, produces inferior accuracy because it is difficult for the convolutional net to predict feature vectors that remain uniform across large objects. Then we consider postprocessing by thresholding a nearest neighbor graph followed by connected components. In this case, segmentations from a metric graph turn out to be competitive or even superior to segmentations from a directly predicted affinity graph. To explain these findings theoretically, we invoke the property that the metric function satisfies the triangle inequality. Then we show with an example where this constraint suppresses noise, causing connected components to more robustly segment a metric graph than an unconstrained affinity graph.