No Arabic abstract
Polycrystalline samples of A$_x$V$_2$Al$_{20}$ (A = Ce, Th, U, Np, Pu; 0.7 =< x =< 1.0) actinide intermetallics were synthesized using the arc-melting method. Crystal structure studies were performed by means of powder x-ray diffraction and the Rietveld refinement method. All studied compounds crystallize in the CeCr$_{2}$Al$_{20}$-type structure (space group Fd-3m, no. 227) with the actinide or Ce atom located in the oversized cage formed by Al atoms. Comparison of the crystallographic results with the reported data for LnV$_{2}$Al$_{20}$ (Ln = lanthanoids) counterparts reveals distinctly different behavior of the lanthanide- and actinide-bearing compounds. This difference is suggested to be caused by fairly localized character of the 4f electrons, whereas itinerant character of the 5f electrons is likely seen for U- and Np-containing phases. Magnetic susceptibility and specific heat measurements did not reveal any magnetic ordering in U$_{0.8}$V$_{2}$Al$_{20}$, Np$_{0.8}$V$_{2}$Al$_{20}$ and Pu$_{0.8}$V$_{2}$Al$_{20}$ down to 2.5 K. A small anomaly in low-temperature specific heat of Ce$_{0.8}$V$_{2}$Al$_{20}$, U$_{0.8}$V$_{2}$Al$_{20}$, and Np$_{0.8}$V$_{2}$Al$_{20}$ is observed, likely arising from a low-energy Einstein mode.
Computationally guided high-throughput synthesis is used to explore the Zn-V-N phase space, resulting in the synthesis of a novel ternary nitride Zn$_2$VN$_3$. Following a combinatorial PVD screening, we isolate the phase and synthesize polycrystalline Zn$_2$VN$_3$ thin films on conventional borosilicate glass substrates. In addition, we demonstrate that cation-disordered, but phase-pure (002)-textured, Zn$_2$VN$_3$ thin films can be grown using epitaxial stabilization on {alpha}-Al2O3 (0001) substrates at remarkably low growth temperatures well below 200 {deg}C. The structural properties and phase composition of the Zn$_2$VN$_3$ films are studied in detail using XRD and (S)TEM techniques. The composition as well as chemical state of the constituent elements are studied using RBS/ERDA as well as XPS/HAXPES methods. These analyses reveal a stoichiometric material with no oxygen contamination, besides a thin surface oxide. We find that orthorhombic Zn$_2$VN$_3$ is a weakly-doped p-type semiconductor demonstrating broadband room-temperature photoluminescence spanning the range between 2 eV and 3 eV, consistent with the bandgap of similar magnitude predicted by density functional theory-based calculations. In addition, the electronic properties can be tuned over a wide range via isostructural alloying on the cation site, making this a promising material for optoelectronic applications.
Here we investigate ground and metastable negative ion formation in low-energy electron collisions with the actinide atoms Th, Pa, U, Np and Pu through the elastic total cross sections (TCSs) calculations. For these atoms, the presence of two or more open d- and f- subshell electrons presents a formidable computational task for conventional theoretical methods, making it difficult to interpret the calculated results. Our robust Regge pole methodology which embeds the crucial electron correlations and the vital core-polarization interaction is used for the calculations. These are the major physical effects mostly responsible for stable negative ion formation in low-energy electron scattering from complex heavy systems. We find that the TCSs are characterized generally by Ramsauer-Townsend minima, shape resonances and dramatically sharp resonances manifesting ground and metastable negative ion formation during the collisions. The extracted from the ground states TCSs anionic binding energies (BEs) are found to be 3.09 eV, 2.98 eV, 3.03 eV, 3.06 eV and 3.25 eV for Th, Pa, U, Np and Pu, respectively. Interestingly, an additional polarization-induced metastable TCS with anionic BE value of 1.22 eV is created in Pu due to the size effect. We also found that our excited states anionic BEs for several of these atoms compare well with the existing theoretical electron affinities including those calculated using the relativistic configuration-interaction method. We conclude that the existing theoretical calculations tend to identify incorrectly the BEs of the resultant excited anionic states with the electron affinities of the investigated actinide atoms; this suggests a need for an unambiguous definition of electron affinity.
We report the design, synthesis, structure, and properties of two complex layered phosphide nitrides, $Ak$Th$_2$Mn$_4$P$_4$N$_2$ ($Ak$ = Rb, Cs), which contain anti-fluorite-type [Mn$_2$P$_2$] bilayers separated by fluorite-type [Th2N2] layers as a result of the intergrowth between AkMn$_2$P$_2$ and ThMnPN. The new compounds are featured with an intrinsic hole doping associated with the interlayer charge transfer and a built-in chemical pressure from the [Th$_2$N$_2$] layers, both of which are reflected by the changes in the lattice and the atomic position of phosphorus. The measurements of magnetic susceptibility, electrical resistivity, and specific heat indicate existence of local moments as well as itinerant electrons in relation with d-p hybridizations. The expected dominant antiferromagnetic interactions with enhanced d-p hybridizations were demonstrated by the first-principles calculations only when additional Coulomb repulsions are included. The density of states at the Fermi level derived from the specific-heat analysis are 3.5 and 7.5 times of the calculated ones for Ak = Rb and Cs, respectively, suggesting strong electron correlations in the title compounds.
We report the structural, magnetic, and magnetocaloric properties of Co$_2$Cr$_{1-x}$Ti$_x$Al ($x=$ 0--0.5) Heusler alloys for spintronic and magnetic refrigerator applications. Room temperature X-ray diffraction and neutron diffraction patterns along with Rietveld refinements confirm that the samples are of single phase and possess a cubic structure. Interestingly, magnetic susceptibly measurements indicate a second order phase transition from paramagnetic to ferromagnetic where the Curie temperature (T$_{rm C}$) of Co$_2$CrAl increases from 330~K to 445~K with Ti substitution. Neutron powder diffraction data of the $x=$ 0 sample across the magnetic phase transition taken in a large temperature range confirm the structural stability and exclude the possibility of antiferromagnetic ordering. The saturation magnetization of the $x=$ 0 sample is found to be 8000~emu/mol (1.45~$mu_{rm B}$/{it f.u.}) at 5~K, which is in good agreement with the value (1.35$pm$0.05~$mu_{rm B}$/{it f.u.}) obtained from the Rietveld analysis of the neutron powder diffraction pattern measured at temperature of 4~K. By analysing the temperature dependence of the neutron data of the $x=$ 0 sample, we find that the change in the intensity of the most intense Bragg peak (220) is consistent with the magnetization behavior with temperature. Furthermore, an enhancement of change in the magnetic entropy and relative cooling power values has been observed for the $x=$ 0.25 sample. Interestingly, the critical behavior analysis across the second order magnetic phase transition and extracted exponents ($betaapprox$ 0.496, $gammaapprox$ 1.348, and $deltaapprox$ 3.71 for the $x=$ 0.25 sample) suggest the presence of long-range ordering, which deviates towards 3D Heisenberg type interactions above T$_{rm C}$, consistent with the interaction range value $sigma$.
A lack of spatial inversion symmetry gives rise to a variety of unconventional physics, from noncollinear order and Skyrmion lattice phases in magnetic materials to topologically-protected surface states in certain band insulators, to mixed-parity pairing states in superconductors. The search for exotic physics in such materials is largely limited by a lack of candidate materials, and often by difficulty in obtaining crystals. Here, we report the single crystal growth and physical properties of the noncentrosymmetric tungsten aluminide cage compounds Al$_4$W and Al$_5$W, alongside related molybdenum aluminides in which spin-orbit coupling should be significantly weaker. All compounds are nonmagnetic metals. Their high conductivities suggest the opportunity to find superconductivity at lower temperatures, while the limits we can place on their transition temperatures suggest that any superconductivity may be expected to exhibit significant parity mixing.