No Arabic abstract
The photon blockade (PB) effect in emitter-cavity systems depends on the anharmonicity of the ladder of dressed energy eigenstates. The recent developments in color center photonics are leading toward experimental demonstrations of multi-emitter-cavity solid-state systems with an expanded set of energy levels compared to the traditionally studied single-emitter systems. We focus on the case of N = 2 nonidentical quasi-atoms strongly coupled to a nanocavity in the bad cavity regime (with parameters within reach of the color center systems), and discover three PB mechanisms: polaritonic, subradiant and unconventional. The polaritonic PB, which is the conventional mechanism studied in single-emitter-cavity systems, also occurs at the polariton frequencies in multi-emitter systems. The subradiant PB is a new interference effect owing to the inhomogeneous broadening of the emitters which results in a purer and a more robust single photon emission than the polaritonic PB. The unconventional PB in the modeled system corresponds to the suppression of the single- and two-photon correlation statistics and the enhancement of the three-photon correlation statistic. Using the effective Hamiltonian approach, we unravel the origin and the time-domain evolution of these phenomena.
We use the scattering matrix formalism to analyze photon blockade in coherently-driven CQED systems with a weak drive. By approximating the weak coherent drive by an input single- and two-photon Fock state, we reduce the computational complexity of the transmission and the two-photon correlation function from exponential to polynomial in the number of emitters. This enables us to easily analyze cavity-based systems containing $sim$50 quantum emitters with modest computational resources. Using this approach we study the coherence statistics of polaritonic photon blockade while increasing the number of emitters for resonant and detuned multi-emitter CQED systems --- we find that increasing the number of emitters worsens photon blockade in resonant systems, and improves it in detuned systems. We also analyze the impact of inhomogeneous broadening in the emitter frequencies on both polaritonic and subradiant photon blockade through this system.
Integration of solid state quantum emitters into nanophotonic circuits is a critical step towards fully on-chip quantum photonic based technologies. Among potential materials platforms, quantum emitters in hexagonal boron nitride have emerged over the last years as viable candidate. While the fundamental physical properties have been intensively studied over the last years, only few works have focused on the emitter integration into photonic resonators. Yet, for a potential quantum photonic material platform, the integration with nanophotonic cavities is an important cornerstone, as it enables the deliberate tuning of the spontaneous emission and the improved readout of distinct transitions for that quantum emitter. In this work, we demonstrate the resonant tuning of an integrated monolithic hBN quantum emitter in a photonic crystal cavity through gas condensation at cryogenic temperature. We resonantly coupled the zero phonon line of the emitter to a cavity mode and demonstrate emission enhancement and lifetime reduction, with an estimation for the Purcell factor of ~ 15.
We present the effects of resonator birefringence on the cavity-enhanced interfacing of quantum states of light and matter, including the first observation of single photons with a time-dependent polarisation state that evolves within their coherence time. A theoretical model is introduced and experimentally verified by the modified polarisation of temporally-long single photons emitted from a $^{87}$Rb atom coupled to a high-finesse optical cavity by a vacuum-stimulated Raman adiabatic passage (V-STIRAP) process. Further theoretical investigation shows how a change in cavity birefringence can both impact the atom-cavity coupling and engender starkly different polarisation behaviour in the emitted photons. With polarisation a key resource for encoding quantum states of light and modern micron-scale cavities particularly prone to birefringence, the consideration of these effects is vital to the faithful realisation of efficient and coherent emitter-photon interfaces for distributed quantum networking and communications.
We theoretically study the quantum interference induced photon blockade phenomenon in atom cavity QED system, where the destructive interference between two different transition pathways prohibits the two-photon excitation. Here, we first explore the single atom cavity QED system via an atom or cavity drive. We show that the cavity-driven case will lead to the quantum interference induced photon blockade under a specific condition, but the atom driven case cant result in such interference induced photon blockade. Then, we investigate the two atoms case, and find that an additional transition pathway appears in the atom-driven case. We show that this additional transition pathway results in the quantum interference induced photon blockade only if the atomic resonant frequency is different from the cavity mode frequency. Moreover, in this case, the condition for realizing the interference induced photon blockade is independent of the systems intrinsic parameters, which can be used to generate antibunched photon source both in weak and strong coupling regimes.
The statistics of photons emitted by single multilevel systems is investigated with emphasis on the nonrenewal characteristics of the photon-arrival times. We consider the correlation between consecutive interphoton times and present closed form expressions for the corresponding multiple moment analysis. Based on the moments a memory measure is proposed which provides an easy way of gaging the non-renewal statistics. Monte-Carlo simulations demonstrate that the experimental verification of non-renewal statistics is feasible.