Do you want to publish a course? Click here

Enhancing entropy and enthalpy fluctuations to drive crystallization in atomistic simulations

172   0   0.0 ( 0 )
 Added by Pablo Miguel Piaggi
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Crystallization is a process of great practical relevance in which rare but crucial fluctuations lead to the formation of a solid phase starting from the liquid. Like in all first order first transitions there is an interplay between enthalpy and entropy. Based on this idea, to drive crystallization in molecular simulations, we introduce two collective variables, one enthalpic and the other entropic. Defined in this way, these collective variables do not prejudge the structure the system is going to crystallize into. We show the usefulness of this approach by studying the case of sodium and aluminum that crystallize in the bcc and fcc crystalline structure, respectively. Using these two generic collective variables, we perform variationally enhanced sampling and well tempered metadynamics simulations, and find that the systems transform spontaneously and reversibly between the liquid and the solid phases.



rate research

Read More

The Jarzynski identity can be applied to instances when a microscopic system is pulled repeatedly but quickly along some coordinate, allowing the calculation of an equilibrium free energy profile along the pulling coordinate from a set of independent non-equilibrium trajectories. Using the formalism of Wiener stochastic path integrals in which we assign temperature-dependent weights to Langevin trajectories, we derive exact formulae for the temperature derivatives of the free energy profile. This leads naturally to analytical expressions for decomposing a free energy profile into equilibrium entropy and internal energy profiles from non-equilibrium pulling. This decomposition can be done from trajectories evolved at a unique temperature without repeating the measurement as done in finite-difference decompositions. Three distinct analytical expressions for the entropy-energy decomposition are derived: using a time-dependent generalization of the weighted histogram analysis method, a quasi harmonic spring limit, and a Feynman-Kac formula. The three novel formulae of reconstructing the pair of entropy-energy profiles are exemplified by Langevin simulations of a two-dimensional model system prototypical for force-induced biomolecular conformational changes. Connections to single-molecule experimental means to probe the functionals needed in the decomposition are suggested.
Using a recently developed thermodynamic integration method, we compute the precise values of the excess Gibbs free energy (G^e) of the high density liquid (HDL) phase with respect to the crystalline phase at different temperatures (T) in the supercooled region of the Stillinger-Weber (SW) silicon [F. H. Stillinger and T. A. Weber, Phys. Rev. B. 32, 5262 (1985)]. Based on the slope of G^e with respect to T, we find that the absolute entropy of the HDL phase increases as its enthalpy changes from the equilibrium value at T ge 1065 K to the value corresponding to a non-equilibrium state at 1060 K. We find that the volume distribution in the equilibrium HDL phases become progressively broader as the temperature is reduced to 1060 K, exhibiting van-der-Waals (VDW) loop in the pressure-volume curves. Our results provides insight into the thermodynamic cause of the transition from the HDL phase to the low density phases in SW silicon, observed in earlier studies near 1060 K at zero pressure.
Freezing is a fundamental physical phenomenon that has been studied over many decades; yet the role played by surfaces in determining nucleation has remained elusive. Here we report direct computational evidence of surface induced nucleation in supercooled systems with a negative slope of their melting line (dP/dT < 0). This unexpected result is related to the density decrease occurring upon crystallization, and to surface tension facilitating the initial nucleus formation. Our findings support the hypothesis of surface induced crystallization of ice in the atmosphere, and provide insight, at the atomistic level, into nucleation mechanisms of widely used semiconductors.
83 - Takahiro Hatano 2015
A theoretical account is given of the microscopic basis of the rate- and state-dependent friction (RSF) law. The RSF law describes rock friction quantitatively and therefore it is commonly used to model earthquakes and the related phenomena. But the RSF law is rather empirical and the theoretical basis has not been very clear. Here we derive the RSF law starting from constitutive laws for asperities, and give the atomistic expressions for the empirical RSF parameters. In particular, we show that both the length constant and the state variable are given as the 0th weighted power means of the corresponding microscopic quantities: a linear dimension and the contact duration of each asperity. As a result, evolution laws for the state variable can be derived systematically. We demonstrate that the aging and the slip laws can be derived and clarify the approximations behind these two major evolution laws. Additionally, the scaling properties of the length constant are clarified for fractal distribution of asperities.
In adaptive resolution simulations, molecular fluids are modeled employing different levels of resolution in different subregions of the system. When traveling from one region to the other, particles change their resolution on the fly. One of the main advantages of such approaches is the computational efficiency gained in the coarse-grained region. In this respect the best coarse-grained system to employ in the low resolution region would be the ideal gas, making intermolecular force calculations in the coarse-grained subdomain redundant. In this case, however, a smooth coupling is challenging due to the high energetic imbalance between typical liquids and a system of non-interacting particles. In the present work, we investigate this approach, using as a test case the most biologically relevant fluid, water. We demonstrate that a successful coupling of water to the ideal gas can be achieved with current adaptive resolution methods, and discuss the issues that remain to be addressed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا