No Arabic abstract
The efficient mixing of fluids is key in many applications, such as chemical reactions and nanoparticle precipitation. Detailed experimental measurements of the mixing dynamics are however difficult to obtain, and so predictive numerical tools are helpful in designing and optimizing many processes. If two different fluids are considered, the viscosity and density of the mixture depend often nonlinearly on the composition, which makes the modeling of the mixing process particularly challenging. Hence water-water mixtures in simple geometries such as T-mixers have been intensively investigated, but little is known about the dynamics of more complex mixtures, especially in the turbulent regime. We here present a numerical method allowing the accurate simulation of two-fluid mixtures. Using a high-performance implementation of this method we perform direct numerical simulations resolving the spatial and temporal dynamics of water-ethanol flows for Reynolds numbers from 100 to 2000. The flows states encountered during turbulence transition and their mixing properties are discussed in detail and compared to water-water mixtures.
Rod bundle flows are prevalent in nuclear engineering for both light water reactors (LWR) and advanced reactor concepts. Unlike canonical channel flow, the flow in rod bundles presents some unique characteristics, notably due to the inhomogeneous cross section which can present different local conditions of turbulence as well as localized effects characteristic of external flows. Despite the ubiquity of rod bundle flows and the decades of experimental and numerical knowledge acquired in this field, there are no publicly available direct numerical simulations (DNS) of the flow in multiple pin rod bundles with heat transfer. A multiple pin DNS study is of great value as it would allow for assessment of the reliability of various turbulence models in the presence of heat transfer, as well as allow for a deeper understanding of the flow physics. We present work towards DNS of the flow in a square 5x5 rod bundle representative of LWR fuel. We consider standard configurations as well as configurations where the central pin is replaced with a guide thimble. We perform simulations in STAR-CCM+ to design the numerical DNS, which is to be conducted using the open source spectral element code Nek5000. Large Eddy Simulations are also performed in Nek5000 to confirm that the resolution requirements are adequate. We compare results from STAR-CCM+ and Nek5000, which show very good agreement in the wide gaps with larger discrepancies in the narrow gaps. In particular, evidence of a gap vortex street is seen in the edge subchannels in LES but is not predicted by STAR-CCM+.
A direct numerical simulation (DNS) of a channel flow with one curved surface was performed at moderate Reynolds number (Re_tau = 395 at the inlet). The adverse pressure gradient was obtained by a wall curvature through a mathematical mapping from physical coordinates to Cartesian ones. The code, using spectral spanwise and normal discretization, combines the advantage of a good accuracy with a fast integration procedure compared to standard numerical procedures for complex geometries. The turbulent flow slightly separates on the profile at the lower curved wall and is at the onset of separation at the opposite flat wall. The thin separation bubble is characterized with a reversal flow fraction. Intense vortices are generated near the separation line on the lower wall but also at the upper wall. Turbulent normal stresses and kinetic energy budget are investigated along the channel.
To investigate the formation mechanism of energy spectra of internal waves in the oceans, direct numerical simulations are performed. The simulations are based on the reduced dynamical equations of rotating stratified turbulence. In the reduced dynamical equations only wave modes are retained, and vortices and horizontally uniform vertical shears are excluded. Despite the simplifications, our simulations reproduce some key features of oceanic internal-wave spectra: accumulation of energy at near-inertial waves and realistic frequency and horizontal wavenumber dependencies. Furthermore, we provide evidence that formation of the energy spectra in the inertial subrange is dominated by scale-separated interactions with the near-inertial waves. These findings support oceanographers intuition that spectral energy density of internal waves is the result of predominantly wave-wave interactions.
We report on a comprehensive experimental-computational study of a simple T-shaped mixer for Reynolds numbers up to $4000$. In the experiments, we determine the mixing time by applying the Villermaux--Dushman characterization to a water-water mixture. In the numerical simulations, we resolve down to the smallest (Kolmogorov) flow scales in space and time. Excellent agreement is obtained between the experimentally measured mixing time and numerically computed intensity of segregation, especially in the turbulent regime, which validates both approaches. We confirm that the mixing time is mainly determined by the specific power input, as assumed in most mixing-models. However, we show that by suitably manipulating the inflow conditions, the power input necessary to achieve a given mixing time can be reduced by a factor of six. Our study enables detailed investigations of the influence of hydrodynamics on chemical reactions and precipitation processes, as well as the detailed testing of turbulence and micromixing models.
The numerical simulation of a flow through a duct requires an externally specified forcing that makes the fluid flow against viscous friction. To this aim, it is customary to enforce a constant value for either the flow rate (CFR) or the pressure gradient (CPG). When comparing a laminar duct flow before and after a geometrical modification that induces a change of the viscous drag, both approaches (CFR and CPG) lead to a change of the power input across the comparison. Similarly, when carrying out the (DNS and LES) numerical simulation of unsteady turbulent flows, the power input is not constant over time. Carrying out a simulation at constant power input (CPI) is thus a further physically sound option, that becomes particularly appealing in the context of flow control, where a comparison between control-on and control-off conditions has to be made. We describe how to carry out a CPI simulation, and start with defining a new power-related Reynolds number, whose velocity scale is the bulk flow that can be attained with a given pumping power in the laminar regime. Under the CPI condition, we derive a relation that is equivalent to the Fukagata--Iwamoto--Kasagi relation valid for CFR (and to its extension valid for CPG), that presents the additional advantage of natively including the required control power. The implementation of the CPI approach is then exemplified in the standard case of a plane turbulent channel flow, and then further applied to a flow control case, where the spanwise-oscillating wall is used for skin friction drag reduction. For this low-Reynolds number flow, using 90% of the available power for the pumping system and the remaining 10% for the control system is found to be the optimum share that yields the largest increase of the flow rate above the reference case, where 100% of the power goes to the pump.