No Arabic abstract
We study the optimization problem for remote one- and two-qubit state creation via a homogeneous spin-1/2 communication line using the local unitary transformations of the multi-qubit sender and extended receiver. We show that the maximal length of a communication line used for the needed state creation (the critical length) increases with an increase in the dimensionality of the sender and extended receiver. The model with the sender and extended receiver consisting of up to 10 nodes is used for the one-qubit state creation and we consider two particular states: the almost pure state and the maximally mixed one. Regarding the two-qubit state creation, we numerically study the dependence of the critical length on a particular triad of independent eigenvalues to be created, the model with four-qubit sender without an extended receiver is used for this purpose.
We study the problem of remote one-qubit mixed state creation using a pure initial state of two-qubit sender and spin-1/2 chain as a connecting line. We express the parameters of creatable states in terms of transition amplitudes. We show that the creation of complete receivers state-space can be achieved only in the chain engineered for the one-qubit perfect state transfer (PST) (for instance, in the fully engineered Ekert chain), the chain can be arbitrarily long in this case. As for the homogeneous chain, the creatable receivers state region decreases quickly with the chain length. Both homogeneous chains and chains engineered for PST can be used for the purpose of selective state creation, when only the restricted part of the whole receivers state space is of interest. Among the parameters of the receivers state, the eigenvalue is the most hard creatable one and therefore deserves the special study. Regarding the homogeneous spin chain, an arbitrary eigenvalue can be created only if the chain is of no more then 34 nodes. Alternating chain allows us to increase this length up to 68 nodes.
A qubit chosen from equatorial or polar great circles on a Bloch sphere can be remotely prepared with an Einstain-Podolsky-Rosen (EPR) state shared and a cbit communication. We generalize this protocal into an arbitrary longitudinal qubit on the Bloch sphere in which the azimuthal angle phi can be an arbitrary value instead of only being zero. The generalized scheme was experimentally realized using liquid-state nuclear magnetic resonance (NMR) techniques. Also, we have experimentally demonstrated remote state measurement (RSM) on an arbitary qubit proposed by Pati.
Phonons, and in particular surface acoustic wave phonons, have been proposed as a means to coherently couple distant solid-state quantum systems. Recent experiments have shown that superconducting qubits can control and detect individual phonons in a resonant structure, enabling the coherent generation and measurement of complex stationary phonon states. Here, we report the deterministic emission and capture of itinerant surface acoustic wave phonons, enabling the quantum entanglement of two superconducting qubits. Using a 2 mm-long acoustic quantum communication channel, equivalent to a 500 ns delay line, we demonstrate the emission and re-capture of a phonon by one qubit; quantum state transfer between two qubits with a 67% efficiency; and, by partial transfer of a phonon between two qubits, generation of an entangled Bell pair with a fidelity of $mathcal{F}_B = 84 pm 1$ %
We study the consequences of super-quantum non-local correlations as represented by the PR-box model of Popescu and Rohrlich, and show PR-boxes can enhance the capacity of noisy interference channels between two senders and two receivers. PR-box correlations violate Bell/CHSH inequalities and are thus stronger -- more non-local -- than quantum mechanics; yet weak enough to respect special relativity in prohibiting faster-than-light communication. Understanding their power will yield insight into the non-locality of quantum mechanics. We exhibit two proof-of-concept channels: first, we show a channel between two sender-receiver pairs where the senders are not allowed to communicate, for which a shared super-quantum bit (a PR-box) allows perfect communication. This feat is not achievable with the best classical (senders share no resources) or quantum entanglement-assisted (senders share entanglement) strategies. Second, we demonstrate a class of channels for which a tunable parameter achieves a double separation of capacities; for some range of epsilon, the super-quantum assisted strategy does better than the entanglement-assisted strategy, which in turn does better than the classical one.
We study the local unitary equivalence for two and three-qubit mixed states by investigating the invariants under local unitary transformations. For two-qubit system, we prove that the determination of the local unitary equivalence of 2-qubits states only needs 14 or less invariants for arbitrary two-qubit states. Using the same method, we construct invariants for three-qubit mixed states. We prove that these invariants are sufficient to guarantee the LU equivalence of certain kind of three-qubit states. Also, we make a comparison with earlier works.