No Arabic abstract
We study the consequences of super-quantum non-local correlations as represented by the PR-box model of Popescu and Rohrlich, and show PR-boxes can enhance the capacity of noisy interference channels between two senders and two receivers. PR-box correlations violate Bell/CHSH inequalities and are thus stronger -- more non-local -- than quantum mechanics; yet weak enough to respect special relativity in prohibiting faster-than-light communication. Understanding their power will yield insight into the non-locality of quantum mechanics. We exhibit two proof-of-concept channels: first, we show a channel between two sender-receiver pairs where the senders are not allowed to communicate, for which a shared super-quantum bit (a PR-box) allows perfect communication. This feat is not achievable with the best classical (senders share no resources) or quantum entanglement-assisted (senders share entanglement) strategies. Second, we demonstrate a class of channels for which a tunable parameter achieves a double separation of capacities; for some range of epsilon, the super-quantum assisted strategy does better than the entanglement-assisted strategy, which in turn does better than the classical one.
In this work, we prove a novel one-shot multi-sender decoupling theorem generalising Dupuis result. We start off with a multipartite quantum state, say on A1 A2 R, where A1, A2 are treated as the two sender systems and R is the reference system. We apply independent Haar random unitaries in tensor product on A1 and A2 and then send the resulting systems through a quantum channel. We want the channel output B to be almost in tensor with the untouched reference R. Our main result shows that this is indeed the case if suitable entropic conditions are met. An immediate application of our main result is to obtain a one-shot simultaneous decoder for sending quantum information over a k-sender entanglement unassisted quantum multiple access channel (QMAC). The rate region achieved by this decoder is the natural one-shot quantum analogue of the pentagonal classical rate region. Assuming a simultaneous smoothing conjecture, this one-shot rate region approaches the optimal rate region of Yard, Dein the asymptotic iid limit. Our work is the first one to obtain a non-trivial simultaneous decoder for the QMAC with limited entanglement assistance in both one-shot and asymptotic iid settings; previous works used unlimited entanglement assistance.
We consider communication between two parties using a bipartite quantum operation, which constitutes the most general quantum mechanical model of two-party communication. We primarily focus on the simultaneous forward and backward communication of classical messages. For the case in which the two parties share unlimited prior entanglement, we give inner and outer bounds on the achievable rate region that generalize classical results due to Shannon. In particular, using a protocol of Bennett, Harrow, Leung, and Smolin, we give a one-shot expression in terms of the Holevo information for the entanglement-assisted one-way capacity of a two-way quantum channel. As applications, we rederive two known additivity results for one-way channel capacities: the entanglement-assisted capacity of a general one-way channel, and the unassisted capacity of an entanglement-breaking one-way channel.
As with classical information, error-correcting codes enable reliable transmission of quantum information through noisy or lossy channels. In contrast to the classical theory, imperfect quantum channels exhibit a strong kind of synergy: there exist pairs of discrete memoryless quantum channels, each of zero quantum capacity, which acquire positive quantum capacity when used together. Here we show that this superactivation phenomenon also occurs in the more realistic setting of optical channels with attenuation and Gaussian noise. This paves the way for its experimental realization and application in real-world communications systems.
We introduce various measures of forward classical communication for bipartite quantum channels. Since a point-to-point channel is a special case of a bipartite channel, the measures reduce to measures of classical communication for point-to-point channels. As it turns out, these reduced measures have been reported in prior work of Wang et al. on bounding the classical capacity of a quantum channel. As applications, we show that the measures are upper bounds on the forward classical capacity of a bipartite channel. The reduced measures are upper bounds on the classical capacity of a point-to-point quantum channel assisted by a classical feedback channel. Some of the various measures can be computed by semi-definite programming.
This paper establishes single-letter formulas for the exact entanglement cost of generating bipartite quantum states and simulating quantum channels under free quantum operations that completely preserve positivity of the partial transpose (PPT). First, we establish that the exact entanglement cost of any bipartite quantum state under PPT-preserving operations is given by a single-letter formula, here called the $kappa$-entanglement of a quantum state. This formula is calculable by a semidefinite program, thus allowing for an efficiently computable solution for general quantum states. Notably, this is the first time that an entanglement measure for general bipartite states has been proven not only to possess a direct operational meaning but also to be efficiently computable, thus solving a question that has remained open since the inception of entanglement theory over two decades ago. Next, we introduce and solve the exact entanglement cost for simulating quantum channels in both the parallel and sequential settings, along with the assistance of free PPT-preserving operations. The entanglement cost in both cases is given by the same single-letter formula and is equal to the largest $kappa$-entanglement that can be shared by the sender and receiver of the channel. It is also efficiently computable by a semidefinite program.