No Arabic abstract
City traffic is a dynamic system of enormous complexity. Modeling and predicting city traffic flow remains to be a challenge task and the main difficulties are how to specify the supply and demands and how to parameterize the model. In this paper we attempt to solve these problems with the help of large amount of floating car data. We propose a coarse-grained cellular automata model that simulates vehicles moving on uniform grids whose size are much larger compared with the microscopic cellular automata model. The car-car interaction in the microscopic model is replaced by the coupling between vehicles and coarse-grained state variables in our model. To parameterize the model, flux-occupancy relations are fitted from the historical data at every grids, which serve as the coarse-grained fundamental diagrams coupling the occupancy and speed. To evaluate the model, we feed it with the historical travel demands and trajectories obtained from the floating car data and use the model to predict road speed one hour into the future. Numerical results show that our model can capture the traffic flow pattern of the entire city and make reasonable predictions. The current work can be considered a prototype for a model-based forecasting system for city traffic.
We present a new cellular automata model of vehicular traffic in cities by combining ideas borrowed from the Biham-Middleton-Levine (BML) model of city traffic and the Nagel-Schreckenberg (NaSch) model of highway traffic. The model exhibits a dynamical phase transition to a completely jammed phase at a critical density which depends on the time periods of the synchronized signals.
One can think of some physical evolutions as being the emergent-effective result of a microscopic discrete model. Inspired by classical coarse-graining procedures, we provide a simple procedure to coarse-grain color-blind quantum cellular automata that follow Goldilocks rules. The procedure consists in (i) space-time grouping the quantum cellular automaton (QCA) in cells of size $N$; (ii) projecting the states of a cell onto its borders, connecting them with the fine dynamics; (iii) describing the overall dynamics by the border states, that we call signals; and (iv) constructing the coarse-grained dynamics for different sizes $N$ of the cells. A byproduct of this simple toy-model is a general discrete analog of the Stokes law. Moreover we prove that in the spacetime limit, the automaton converges to a Dirac free Hamiltonian. The QCA we introduce here can be implemented by present-day quantum platforms, such as Rydberg arrays, trapped ions, and superconducting qbits. We hope our study can pave the way to a richer understanding of those systems with limited resolution.
To provide a more accurate description of the driving behaviors in vehicle queues, a namely Markov-Gap cellular automata model is proposed in this paper. It views the variation of the gap between two consequent vehicles as a Markov process whose stationary distribution corresponds to the observed distribution of practical gaps. The multiformity of this Markov process provides the model enough flexibility to describe various driving behaviors. Two examples are given to show how to specialize it for different scenarios: usually mentioned flows on freeways and start-up flows at signalized intersections. The agreement between the empirical observations and the simulation results suggests the soundness of this new approach.
With the exponential growth in the world population and the constant increase in human mobility, the danger of outbreaks of epidemics is rising. Especially in high density urban areas such as public transport and transfer points, where people come in close proximity of each other, we observe a dramatic increase in the transmission of airborne viruses and related pathogens. It is essential to have a good understanding of the `transmission highways in such areas, in order to prevent or to predict the spreading of infectious diseases. The approach we take is to combine as much information as is possible, from all relevant sources and integrate this in a simulation environment that allows for scenario testing and decision support. In this paper we lay out a novel approach to study Urban Airborne Disease spreading by combining traffic information, with geo-spatial data, infection dynamics and spreading characteristics.
Discretization of phase space usually nullifies chaos in dynamical systems. We show that if randomness is associated with discretization dynamical chaos may survive and be indistinguishable from that of the original chaotic system, when an entropic, coarse-grained analysis is performed. Relevance of this phenomenon to the problem of quantum chaos is discussed.