Do you want to publish a course? Click here

HI-to-H2 Transition Layers in the Star-Forming Region W43

114   0   0.0 ( 0 )
 Added by Shmuel Bialy
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The process of atomic-to-molecular (HI-to-H$_2$) gas conversion is fundamental for molecular-cloud formation and star formation. 21 cm observations of the star-forming region W43 revealed extremely high HI column densities, of 120-180 M$_{odot}$ pc$^{-2}$, a factor of 10-20 larger than predicted by HI-to-H$_2$ transition theories. We analyze the observed HI with an HI-to-H$_2$ transition theoretical model, and show that the theory-observation discrepancy cannot be explained by the intense radiation in W43, nor by variations of the assumed volume density or H$_2$ formation-rate coefficient. We show that the large observed HI columns are naturally explained by several ($9-22$) HI-to-H$_2$ transition layers, superimposed along the sightlines of W43. We discuss other possible interpretations such as a non-steady-state scenario, and inefficient dust absorption. The case of W43 suggests that HI thresholds reported in extra-galactic observations are probably not associated with a single HI-to-H$_2$ transition, but are rather a result of several transition layers (clouds) along the sightlines, beam-diluted with diffuse inter-cloud gas.



rate research

Read More

We study the effect of density fluctuations induced by turbulence on the HI/H$_2$ structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas, and chemical HI/H$_2$ balance calculations. We derive atomic-to-molecular density profiles and the HI column density probability density function (PDF) assuming chemical equilibrium. We find that while the HI/H$_2$ density profiles are strongly perturbed in turbulent gas, the mean HI column density is well approximated by the uniform-density analytic formula of Sternberg et al. (2014). The PDF width depends on (a) the radiation intensity to mean density ratio, (b) the sonic Mach number and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the HI PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of HI in the Perseus molecular cloud. We show that a narrow observed HI PDF may imply small scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.
We present a simple analytic procedure for generating atomic-to-molecular (HI-to-H$_2$) density profiles for optically thick clouds illuminated by far-ultraviolet radiation. Our procedure is based on the analytic theory for the structure of one-dimensional HI/H$_2$ photon-dominated regions, presented by Sternberg et al. (2014). Depth-dependent HI and H$_2$ density fractions may be computed for arbitrary gas density, far-ultraviolet field intensity, and the metallicity dependent H$_2$ formation rate coefficient, and dust absorption cross section. We use our procedure to generate a set of HI-to-H$_2$ transition profiles for a wide range of conditions, from the weak- to strong-field limits, and from super-solar down to low metallicities. We show that if presented as functions of dust optical depth the HI and H$_2$ density profiles depend primarily on the Sternberg $alpha G$ parameter (dimensionless) that determines the dust optical depth associated with the total photodissociated HI column. We derive a universal analytic formula for the HI-to-H$_2$ transition points as a function of just $alpha G$. Our formula will be useful for interpreting emission-line observations of HI/H$_2$ interfaces, for estimating star-formation thresholds, and for sub-grid components in hydrodynamics simulations.
The formation of stars and planetary systems is a complex phenomenon, which relies on the interplay of multiple physical processes. Nonetheless, it represents a crucial stage for our understanding of the Universe, and in particular of the conditions leading to the formation of key molecules (e.g. water) on comets and planets. {it Herschel} observations demonstrated that stars form out of gaseous filamentary structures in which the main constituent is molecular hydrogen (H$_2$). Depending on its nuclear spin H$_2$ can be found in two forms: `ortho with parallel spins and `para where the spins are anti-parallel. The relative ratio among these isomers, i.e.,the ortho-to-para ratio (OPR), plays a crucial role in a variety of processes related to the thermodynamics of star-forming gas and to the fundamental chemistry affecting the formation of water in molecular clouds and its subsequent deuteration, commonly used to determine the origin of water in Solar Systems bodies. Here, for the first time, we assess the evolution of the OPR starting from the warm neutral medium, by means of state-of-the-art three-dimensional magneto-hydrodynamic simulations of turbulent molecular clouds. Our results show that star-forming clouds exhibit a low OPR ($ll 0.1$) already at moderate densities ($sim$1000 cm$^{-3}$). We also constrain the cosmic rays ionisation rate, finding that $10^{-16},rm s^{-1}$ is the lower limit required to explain the observations of diffuse clouds. Our results represent a step forward in the understanding of the star and planet formation process providing a robust determination of the chemical initial conditions for both theoretical and observational studies.
183 - M.T. Beltran 2013
Context. G29.96-0.02 is a high-mass star-forming cloud observed at 70, 160, 250, 350, and 500 microns as part of the Herschel survey of the Galactic Plane during the Science Demonstration Phase. Aims. We wish to conduct a far-infrared study of the sources associated with this star-forming region by estimating their physical properties and evolutionary stage, and investigating the clump mass function, the star formation efficiency and rate in the cloud. Methods. We have identified the Hi-GAL sources associated with the cloud, searched for possible counterparts at centimeter and infrared wavelengths, fitted their spectral energy distribution and estimated their physical parameters. Results. A total of 198 sources have been detected in all 5 Hi-GAL bands, 117 of which are associated with 24 microns emission and 87 of which are not associated with 24 microns emission. We called the former sources 24 microns-bright and the latter ones 24 microns-dark. The [70-160] color of the 24 microns-dark sources is smaller than that of the 24 microns-bright ones. The 24 microns-dark sources have lower L_bol and L_bol/M_env than the 24 microns-bright ones for similar M_env, which suggests that they are in an earlier evolutionary phase. The G29-SFR cloud is associated with 10 NVSS sources and with extended centimeter continuum emission well correlated with the 70 microns emission. Most of the NVSS sources appear to be early B or late O-type stars. The most massive and luminous Hi-GAL sources in the cloud are located close to the G29-UC region, which suggests that there is a privileged area for massive star formation towards the center of the G29-SFR cloud. Almost all the Hi-GAL sources have masses well above the Jeans mass but only 5% have masses above the virial mass, which indicates that most of the sources are stable against gravitational collapse. The sources with M_env > M_virial and that ...
We apply the Sternberg et al. (2014) theoretical model to analyze HI and H2 observations in the Perseus molecular cloud. We constrain the physical properties of the HI shielding envelopes and the nature of the HI-to-H2 transitions. Our analysis (Bialy et al. 2015) implies that in addition to cold neutral gas (CNM), less dense thermally-unstable gas (UNM) significantly contributes to the shielding of the H2 cores in Perseus.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا