Do you want to publish a course? Click here

On the Silicate Crystallinities of Oxygen-Rich Evolved Stars and Their Mass Loss Rates

323   0   0.0 ( 0 )
 Added by Jiaming Liu
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

For decades ever since the early detection in the 1990s of the emission spectral features of crystalline silicates in oxygen-rich evolved stars, there is a long-standing debate on whether the crystallinity of the silicate dust correlates with the stellar mass loss rate. To investigate the relation between the silicate crystallinities and the mass loss rates of evolved stars, we carry out a detailed analysis of 28 nearby oxygen-rich stars. We derive the mass loss rates of these sources by modeling their spectral energy distributions from the optical to the far infrared. Unlike previous studies in which the silicate crystallinity was often measured in terms of the crystalline-to-amorphous silicate mass ratio, we characterize the silicate crystallinities of these sources with the flux ratios of the emission features of crystalline silicates to that of amorphous silicates. This does not require the knowledge of the silicate dust temperatures which are the major source of uncertainties in estimating the crystalline-to-amorphous silicate mass ratio. With a Pearson correlation coefficient of ~0.24, we find that the silicate crystallinities and the mass loss rates of these sources are not correlated. This supports the earlier findings that the dust shells of low mass-loss rate stars can contain a significant fraction of crystalline silicates without showing the characteristic features in their emission spectra.



rate research

Read More

A sample of 28 oxygen-rich evolved stars is selected based on the presence of crystalline silicate emission features in their ISO/SWS spectra. The crystallinity, measured as the flux fraction of crystalline silicate features, is found not related to mass loss rate that is derived from fitting the spectral energy distribution.
The circumstellar ammonia (NH$_3$) chemistry in evolved stars is poorly understood. Previous observations and modelling showed that NH$_3$ abundance in oxygen-rich stars is several orders of magnitude above that predicted by equilibrium chemistry. In this article, we characterise the spatial distribution and excitation of NH$_3$ in the O-rich circumstellar envelopes (CSEs) of four diverse targets: IK Tau, VY CMa, OH 231.8+4.2, and IRC +10420 with multi-wavelength observations. We observed the 1.3-cm inversion line emission with the Very Large Array (VLA) and submillimetre rotational line emission with the Heterodyne Instrument for the Far-Infrared (HIFI) aboard Herschel from all four targets. For IK Tau and VY CMa, we observed the rovibrational absorption lines in the $ u_2$ band near 10.5 $mu$m with the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility (IRTF). We also attempted to search for the rotational transition within the $v_2=1$ state near 2 mm with the IRAM 30m Telescope towards IK Tau. Non-LTE radiative transfer modelling, including radiative pumping to the vibrational state, was carried out to derive the radial distribution of NH$_3$ in these CSEs. Our modelling shows that the NH$_3$ abundance relative to molecular hydrogen is generally of the order of $10^{-7}$, which is a few times lower than previous estimates that were made without considering radiative pumping and is at least 10 times higher than that in the C-rich CSE of IRC +10216. Incidentally, we also derived a new period of IK Tau from its $V$-band light curve. NH$_3$ is again detected in very high abundance in O-rich CSEs. Its emission mainly arises from localised spatial-kinematic structures that are probably denser than the ambient gas. Circumstellar shocks in the accelerated wind may contribute to the production of NH$_3$. (Abridged abstract)
We present the results of our survey of 1612 MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Large Magellanic Cloud. We have discovered four new circumstellar maser sources in the LMC, and increased the number of reliable wind speeds from IR stars in the LMC from 5 to 13. Using our new wind speeds, as well as those from Galactic sources, we have derived an updated relation for dust driven winds: $v_{exp} propto Z L^{0.4}$. We compare the sub-solar metallicity LMC OH/IR stars with carefully selected samples of more metal-rich OH/IR stars, also at known distances, in the Galactic Centre and Galactic Bulge. For 8 of the Bulge stars we derive pulsation periods for the first time, using near-IR photometry from the VVV survey. We have modeled our LMC OH/IR stars and developed an empirical method of deriving gas-to-dust ratios and mass loss rates by scaling the models to the results from maser profiles. We have done this also for samples in the Galactic Centre and Bulge and derived a new mass loss prescription that includes luminosity, pulsation period, and gas-to-dust ratio $dot{M} = 1.06^{+3.5}_{-0.8} rm{ cdot }10^{-5},(L/10^4,rm{L}_odot)^{0.9pm0.1}(P/500,rm{d})^{0.75pm0.3} (r_{gd}/200)^{-0.03pm0.07},rm{M_{odot}}, yr^{-1}$. The tightest correlation is found between mass loss rate and luminosity. We find that the gas-to-dust ratio has little effect on the mass loss of oxygen-rich AGB stars and RSGs within the Galaxy and the LMC. This suggests that mass loss of oxygen-rich AGB stars and RSGs is (nearly) independent of metallicity between a half and twice solar.
225 - Jorick S. Vink 2014
We discuss the basic physics of hot-star winds and we provide mass-loss rates for (very) massive stars. Whilst the emphasis is on theoretical concepts and line-force modelling, we also discuss the current state of observations and empirical modelling, and address the issue of wind clumping.
In order to determine the composition of the dust in the circumstellar envelopes of oxygen-rich asymptotic giant branch (AGB) stars we have computed a grid of modust radiative-transfer models for a range of dust compositions, mass-loss rates, dust shell inner radii and stellar parameters. We compare the resulting colours with the observed oxygen-rich AGB stars from the SAGE-Spec Large Magellanic Cloud (LMC) sample, finding good overall agreement for stars with a mid-infrared excess. We use these models to fit a sample of 37 O-rich AGB stars in the LMC with optically thin circumstellar envelopes, for which 5$-$35-$mu$m Spitzer infrared spectrograph (IRS) spectra and broadband photometry from the optical to the mid-infrared are available. From the modelling, we find mass-loss rates in the range $sim 8times10^{-8}$ to $5times10^{-6}$ M$_{odot} mathrm{yr}^{-1}$, and we show that a grain mixture consisting primarily of amorphous silicates, with contributions from amorphous alumina and metallic iron provides a good fit to the observed spectra. Furthermore, we show from dust models that the AKARI [11]$-$[15] versus [3.2]$-$[7] colour-colour diagram, is able to determine the fractional abundance of alumina in O-rich AGB stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا