No Arabic abstract
From a sequence of similarity networks, with edges representing certain similarity measures between nodes, we are interested in detecting a change-point which changes the statistical property of the networks. After the change, a subset of anomalous nodes which compares dissimilarly with the normal nodes. We study a simple sequential change detection procedure based on node-wise average similarity measures, and study its theoretical property. Simulation and real-data examples demonstrate such a simply stopping procedure has reasonably good performance. We further discuss the faulty sensor isolation (estimating anomalous nodes) using community detection.
Structural changes occur in dynamic networks quite frequently and its detection is an important question in many situations such as fraud detection or cybersecurity. Real-life networks are often incompletely observed due to individual non-response or network size. In the present paper we consider the problem of change-point detection at a temporal sequence of partially observed networks. The goal is to test whether there is a change in the network parameters. Our approach is based on the Matrix CUSUM test statistic and allows growing size of networks. We show that the proposed test is minimax optimal and robust to missing links. We also demonstrate the good behavior of our approach in practice through simulation study and a real-data application.
The aim of online monitoring is to issue an alarm as soon as there is significant evidence in the collected observations to suggest that the underlying data generating mechanism has changed. This work is concerned with open-end, nonparametric procedures that can be interpreted as statistical tests. The proposed monitoring schemes consist of computing the so-called retrospective CUSUM statistic (or minor variations thereof) after the arrival of each new observation. After proposing suitable threshold functions for the chosen detectors, the asymptotic validity of the procedures is investigated in the special case of monitoring for changes in the mean, both under the null hypothesis of stationarity and relevant alternatives. To carry out the sequential tests in practice, an approach based on an asymptotic regression model is used to estimate high quantiles of relevant limiting distributions. Monte Carlo experiments demonstrate the good finite-sample behavior of the proposed monitoring schemes and suggest that they are superior to existing competitors as long as changes do not occur at the very beginning of the monitoring. Extensions to statistics exhibiting an asymptotic mean-like behavior are briefly discussed. Finally, the application of the derived sequential change-point detection tests is succinctly illustrated on temperature anomaly data.
A novel sequential change detection problem is proposed, in which the change should be not only detected but also accelerated. Specifically, it is assumed that the sequentially collected observations are responses to treatments selected in real time. The assigned treatments not only determine the pre-change and post-change distributions of the responses, but also influence when the change happens. The problem is to find a treatment assignment rule and a stopping rule that minimize the expected total number of observations subject to a user-specified bound on the false alarm probability. The optimal solution to this problem is obtained under a general Markovian change-point model. Moreover, an alternative procedure is proposed, whose applicability is not restricted to Markovian change-point models and whose design requires minimal computation. For a large class of change-point models, the proposed procedure is shown to achieve the optimal performance in an asymptotic sense. Finally, its performance is found in two simulation studies to be close to the optimal, uniformly with respect to the error probability.
Change-point detection (CPD) aims to detect abrupt changes over time series data. Intuitively, effective CPD over multivariate time series should require explicit modeling of the dependencies across input variables. However, existing CPD methods either ignore the dependency structures entirely or rely on the (unrealistic) assumption that the correlation structures are static over time. In this paper, we propose a Correlation-aware Dynamics Model for CPD, which explicitly models the correlation structure and dynamics of variables by incorporating graph neural networks into an encoder-decoder framework. Extensive experiments on synthetic and real-world datasets demonstrate the advantageous performance of the proposed model on CPD tasks over strong baselines, as well as its ability to classify the change-points as correlation changes or independent changes. Keywords: Multivariate Time Series, Change-point Detection, Graph Neural Networks
Structural breaks have been commonly seen in applications. Specifically for detection of change points in time, research gap still remains on the setting in ultra high dimension, where the covariates may bear spurious correlations. In this paper, we propose a two-stage approach to detect change points in ultra high dimension, by firstly proposing the dynamic titled current correlation screening method to reduce the input dimension, and then detecting possible change points in the framework of group variable selection. Not only the spurious correlation between ultra-high dimensional covariates is taken into consideration in variable screening, but non-convex penalties are studied in change point detection in the ultra high dimension. Asymptotic properties are derived to guarantee the asymptotic consistency of the selection procedure, and the numerical investigations show the promising performance of the proposed approach.