Do you want to publish a course? Click here

Detection of the Binarity of the Star J1158+4239

197   0   0.0 ( 0 )
 Added by Maxim Khovritchev
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the goals of the Pulkovo program of research on stars with large proper motions is to reveal among the low-luminosity stars those that have evidence of binarity. Twelve astrometric binary candidates from the Pulkovo list have been included in the program of speckle observations with the BTA telescope at the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) and the 2.5-m telescope at the Caucasus Mountain Observatory (CMO) of the Sternberg Astronomical Institute of the Moscow State University to confirm their binarity and then to determine the parameters of the revealed stellar pairs. The binarity of the brightest of these stars, J1158+4239 (GJ 3697), has been confirmed. Four sessions of speckle observations with the BTA SAO RAS telescope and one session with the 2.5-m CMO telescope have been carried out in 2015 - 2016. The weighted mean estimates of the pair parameters are $rho$=286.5$pm$1.2 mas and $theta$=230.24$pm$0.16$^{circ}$ at the epoch B2015.88248. The magnitude difference between the pair stars is $Delta m$=0.55$pm$0.03 (a filter with a central wavelength of 800 nm and a FWHM of 100 nm) and $Delta m$=0.9$pm$0.1 (an R filter).



rate research

Read More

646 - E. Alecian 2009
In this paper we report the results of high-resolution circular spectropolarimetric monitoring of the Herbig Ae star V380 Ori, in which we discovered a magnetic field in 2005. A careful study of the intensity spectrum reveals the presence of a cool spectroscopic companion. By modelling the binary spectrum we infer the effective temperature of both stars: $10500pm 500$ K for the primary, and $5500pm500$ K for the secondary, and we argue that the high metallicity ($[M/H] = 0.5$), required to fit the lines may imply that the primary is a chemically peculiar star. We observe that the radial velocity of the secondarys lines varies with time, while that of the the primary does not. By fitting these variations we derive the orbital parameters of the system. We find an orbital period of $104pm5$ d, and a mass ratio ($M_{rm P}/M_{rm S}$) larger than 2.9. The intensity spectrum is heavily contaminated with strong, broad and variable emission. A simple analysis of these lines reveals that a disk might surround the binary, and that a wind occurs in the environment of the system. Finally, we performed a magnetic analysis using the Least-Squares Deconvolved (LSD) profiles of the Stokes $V$ spectra of both stars, and adopting the oblique rotator model. From rotational modulation of the primarys Stokes $V$ signatures, we infer its rotation period $P=4.31276pm0.00042$ d, and find that it hosts a centred dipole magnetic field of polar strength $2.12pm0.15$ kG, with a magnetic obliquity $beta = 66pm5^{circ}$, and a rotation axis inclination $i=32pm5^{circ}$. However, no magnetic field is detected in the secondary, and if it hosts a dipolar magnetic field, its strength must be below about 500 G, to be consistent with our observations.
VLTI/AMBER and VLTI/PIONIER observations of the LBV HR Car show an interferometric signature that could not possibly be explained by an extended wind, more or less symmetrically distributed around a single object. Instead, observations both in the Br$gamma$ line and the H-band continuum are best explained by two point sources (or alternatively one point source and one slightly extended source) at about 2 mas separation and a contrast ratio of about 1:5. These observations establish that HR Car is a binary, but further interpretation will only be possible with future observations to constrain the orbit. Under the assumption that the current separation is close to the maximum one, the orbital period can be estimated to be of the order of 5 years, similar as in the $eta$ Car system. This would make HR Car the second such LBV binary.
More than 40 years of ground-based photometric observations of the delta Sct star 4CVn revealed 18 independent oscillation frequencies, including radial as well as non-radial p-modes of low spherical degree l<=2. From 2008 to 2011, more than 2000 spectra were obtained at the 2.1-m Otto-Struve telescope at the McDonald Observatory. We present the analysis of the line-profile variations, based on the Fourier-parameter fit method, detected in the absorption lines of 4CVn, which carry clear signatures of the pulsations. From a non-sinusoidal, periodic variation of the radial velocities, we discovered that 4CVn is an eccentric binary system, with an orbital period Porb = 124.44 +/- 0.03 d and an eccentricity e = 0.311 +/- 0.003. We firmly detect 20 oscillation frequencies, 9 of which are previously unseen in photometric data, and attempt mode identification for the two dominant modes, f1 = 7.3764 c/d and f2 = 5.8496 c/d, and determine the prograde or retrograde nature of 7 of the modes. The projected rotational velocity of the star, vsini ~ 106.7 km/s, translates to a rotation rate of veq/vcrit >= 33%. This relatively high rotation rate hampers unique mode identification, since higher-order effects of rotation are not included in the current methodology. We conclude that, in order to achieve unambiguous mode identification for 4CVn, a complete description of rotation and the use of blended lines have to be included in mode-identification techniques.
White dwarfs (WDs) are powerful tools to study the evolutionary history of stars and binaries in the Galaxy. But do we understand their multiplicity from a theoretical point of view? This can be tested by a comparison with the sample of WDs within 20 pc, which is minimally affected by selection biases. From the literature, we compile the available information of the local WD sample with a particular emphasis on their multiplicity, and compare this to synthetic models of WD formation in single stars and binaries. As part of our population synthesis approach, we also study the effect of different assumptions concerning the star formation history, binary evolution, and the initial distributions of binary parameters. We find that the observed space densities of single and binary WDs are well reproduced by the models. The space densities of the most common WD systems (single WDs and unresolved WD-MS binaries) are consistent within a factor two with the observed value. We find a discrepancy only for the space density of resolved double WDs. We exclude that observational selection effects, fast stellar winds, or dynamical interactions with other objects in the Milky Way explain this discrepancy. We find that either the initial mass ratio distribution in the Solar neighbourhood is biased towards low mass-ratios, or more than ten resolved DWDs have been missed observationally in the 20 pc sample. Furthermore, we show that the low binary fraction of WD systems (~25%) compared to Solartype MS-MS binaries (~50%) is consistent with theory, and is mainly caused by mergers in binary systems, and to a lesser degree by WDs hiding in the glare of their companion stars. Lastly, Gaia will dramatically increase the size of the volume-limited WD sample, detecting the coolest and oldest WDs out to 50 pc. We provide a detailed estimate of the number of single and binary WDs in the Gaia sample.
129 - David Jones 2011
The role of central star binarity in the shaping of planetary nebulae (PNe) has been the subject of much debate, with single stars believed to be incapable of producing the most highly collimated morphologies. However, observational support for binary-induced shaping has been sadly lacking. Here, we highlight the results of a continuing programme to spatio-kinematically model the morphologies of all PNe known to contain a close binary central star. Spatio-kinematical modelling is imperative for these objects, as it circumvents the degeneracy between morphology and orientation which can adversely affect determinations of morphology based on imaging alone. Furthermore, spatio-kinematical modelling accurately determines the orientation of the nebular shell, allowing the theoretically predicted perpendicular alignment, between nebular symmetry axis and binary orbital plane, to be tested. To date, every PN subjected to this investigation has displayed the predicted alignment, indicating that binarity has played an important role in the formation and evolution of these nebulae. The further results from this programme will be key, not only in determining whether binary interaction is responsible for shaping the studied PNe, but also in assessing the importance of binarity in the formation and evolution of all PNe in general.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا