No Arabic abstract
More than 40 years of ground-based photometric observations of the delta Sct star 4CVn revealed 18 independent oscillation frequencies, including radial as well as non-radial p-modes of low spherical degree l<=2. From 2008 to 2011, more than 2000 spectra were obtained at the 2.1-m Otto-Struve telescope at the McDonald Observatory. We present the analysis of the line-profile variations, based on the Fourier-parameter fit method, detected in the absorption lines of 4CVn, which carry clear signatures of the pulsations. From a non-sinusoidal, periodic variation of the radial velocities, we discovered that 4CVn is an eccentric binary system, with an orbital period Porb = 124.44 +/- 0.03 d and an eccentricity e = 0.311 +/- 0.003. We firmly detect 20 oscillation frequencies, 9 of which are previously unseen in photometric data, and attempt mode identification for the two dominant modes, f1 = 7.3764 c/d and f2 = 5.8496 c/d, and determine the prograde or retrograde nature of 7 of the modes. The projected rotational velocity of the star, vsini ~ 106.7 km/s, translates to a rotation rate of veq/vcrit >= 33%. This relatively high rotation rate hampers unique mode identification, since higher-order effects of rotation are not included in the current methodology. We conclude that, in order to achieve unambiguous mode identification for 4CVn, a complete description of rotation and the use of blended lines have to be included in mode-identification techniques.
We present the mode identification of frequencies found in spectroscopic observations of the Gamma Doradus star HD135825. Four frequencies were successfully identified: 1.3150 +/- 0.0003 1/d; 0.2902 +/- 0.0004 1/d; 1.4045 +/- 0.0005 1/d; and 1.8829 +/- 0.0005 1/d. These correspond to (l, m) modes of (1,1), (2,-2), (4,0) and (1,1) respectively. Additional frequencies were found but they were below the signal-to-noise limit of the Fourier spectrum and not suitable for mode identification. The rotational axis inclination and vsini of the star were determined to be 87 degrees (nearly edge-on) and 39.7 km/s (moderate for Gamma Doradus stars) respectively. A simultaneous fit of these four modes to the line profile variations in the data gives a reduced chi square of 12.7. We confirm, based on the frequencies found, that HD135825 is a bona fide Gamma Doradus star.
The prototype star for the {gamma} Doradus class of pulsating variables was studied em- ploying photometric and spectroscopic observations to determine the frequencies and modes of pulsation. The four frequencies found were self-consistent between the obser- vation types and almost identical to those found in previous studies (1.3641 d-1 ,1.8783 d-1 , 1.4742 d-1 and 1.3209 d-1). Three of the frequencies are classified as l, m = (1, 1) pulsations and the other is ambiguous between l = 2 modes. Two frequencies are shown to be stable over twenty years since their first identification. The agreement in ground-based work makes this star an excellent calibrator for the upcoming TESS observations and a standard for continued asteroseismic modelling.
KIC 10661783 is an eclipsing binary that shows Delta Sct-like oscillations. More than 60 pulsation frequencies have been detected in its light curve as observed by the Kepler satellite. We want to determine the fundamental stellar and system parameters of the eclipsing binary as a precondition for asteroseismic modelling of the pulsating component and to establish whether the star is a semi-detached Algol-type system. We measured the radial velocities of both components from new high-resolution spectra using TODCOR and compute the orbit using PHOEBE. We used the KOREL program to decompose the observed spectra into its components, and analysed the decomposed spectra to determine the atmospheric parameters. For this, we developed a new computer program for the normalisation of the KOREL output spectra. Fundamental stellar parameters are determined by combining the spectroscopic results with those from the analysis of the Kepler light curve. We obtain Teff, logg, vsini, and the absolute masses and radii of the components, together with their flux ratio and separation. Whereas the secondary star rotates synchronously with the orbital motion, the primary star rotates subsynchronously by a factor of 0.75. The newly determined mass ratio of 0.0911 is higher than previously thought and means a detached configuration is required to fit the light curve. With its low orbital period and very low mass ratio, the system shows characteristics of the R CMa-type stars but differs from this group by being detached. Its current state is assumed to be that of a detached post-Algol binary system with a pulsating primary component.
It has been suggested that the detection of a wealth of very low amplitude modes in Delta Sct stars was only a matter of signal--to--noise ratio. Access to this treasure, impossible from the ground, is one of the scientific aims of the space mission CoRoT, developed and operated by CNES. This work presents the results obtained on HD 50844: the 140,016 datapoints allowed us to reach the level of 10^{-5} mag in the amplitude spectra. The frequency analysis of the CoRoT timeseries revealed hundreds of terms in the frequency range 0--30 d^{-1}. The initial guess that Delta Sct stars have a very rich frequency content is confirmed. The spectroscopic mode identification gives theoretical support since very high--degree modes (up to ell=14) are identified. We also prove that cancellation effects are not sufficient in removing the flux variations associated to these modes at the noise level of the CoRoT measurements. The ground--based observations indicate that HD 50844 is an evolved star that is slightly underabundant in heavy elements, located on the Terminal Age Main Sequence. The predominant term (f_1=6.92 d^{-1}) has been identified as the fundamental radial mode combining ground-based photometric and spectroscopic data. This work is based on observations made with ESO telescopes under the Large Programme LP 178.D-0361.
We report on a multi-site photometric campaign on the high-amplitude $delta$ Scuti star V2367 Cyg in order to determine the pulsation modes. We also used high-dispersion spectroscopy to estimate the stellar parameters and projected rotational velocity. Time series multicolour photometry was obtained during a 98-d interval from five different sites. These data were used together with model atmospheres and non-adiabatic pulsation models to identify the spherical harmonic degree of the three independent frequencies of highest amplitude as well as the first two harmonics of the dominant mode. This was accomplished by matching the observed relative light amplitudes and phases in different wavebands with those computed by the models. In general, our results support the assumed mode identifications in a previous analysis of Kepler data.