Do you want to publish a course? Click here

Measurement of parameters of scintillating bars with wavelength-shifting fibres and silicon photomultiplier readout for the SHiP Muon Detector

234   0   0.0 ( 0 )
 Added by Gaia Lanfranchi
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The light yield and the time resolution of different types of 3 m long scintillating bars instrumented with wavelength shifting fibres and read out by different models of silicon photomultipliers have been measured at a test beam at the T9 area at the CERN Proton Synchrotron. The results obtained with different configurations are presented. A time resolution better than 800 ps, constant along the bar length within 20%, and a light yield of ~ 140 (70) photoelectrons are obtained for bars 3 m long, 4.5 (5) cm wide and 2 (0.7) cm thick. These results nicely match the requirements for the Muon Detector of the SHiP experiment.



rate research

Read More

The performance of the $200times2.5times1$ cm$^3$ plastic scintillator strip with wavelength shifting fiber read-out by two novel photodetectors called Silicon PhotoMultipliers (SiPMs) is discussed. The advantages of SiPM relative to the traditional multichannel photomultiplier are shown. Light yield and light attenuation measurements are presented. This technique can be used in muon or calorimeter systems.
The performance of scintillator counters with embedded wavelength-shifting fibers has been measured in the Fermilab Meson Test Beam Facility using 120 GeV protons. The counters were extruded with a titanium dioxide surface coating and two channels for fibers at the Fermilab NICADD facility. Each fiber end is read out by a 2*2 mm^2 silicon photomultiplier. The signals were amplified and digitized by a custom-made front-end electronics board. Combinations of 5*2 cm^2 and 6*2 cm^2 extrusion profiles with 1.4 and 1.8 mm diameter fibers were tested. The design is intended for the cosmic-ray veto detector for the Mu2e experiment at Fermilab. The light yield as a function of the transverse and longitudinal position of the beam will be given.
The Mu2e experiment will search for a neutrino-less muon-to-electron conversion process with almost four orders of magnitude of sensitivity improvement relative to the current best limit. One important background is caused by cosmic ray muons, and particles produced by their decay or interactions, mimicking the conversion electron signature. In order to reach the design sensitivity, Mu2e needs to obtain a cosmic ray veto (CRV) efficiency of 99.99%. The CRV system consists of four layers of plastic scintillating counters read out by silicon photo-multipliers (SiPM) through wavelength shifting fibers. The CRV counters must produce sufficient photo statistics in order to achieve the required veto efficiency. We study the light properties of several wavelength shifting fiber sizes in order to optimize the total light yield for the CRV system. The measurements are performed using a scanner designed to ensure fiber quality for the CRV.
The results obtained in laboratory tests, using scintillator bars read by silicon photomultipliers are reported. The present approach is the first step for designing a precision tracking system to be placed inside a free magnetized volume for the charge identification of low energy crossing particles. The devised system is demonstrated able to provide a spatial resolution better than 2 mm.
A double-phase argon Time Projection Chamber (TPC), with an active mass of 185 g, has been designed and constructed for the Recoil Directionality (ReD) experiment. The aim of the ReD project is to investigate the directional sensitivity of argon-based TPCs via columnar recombination to nuclear recoils in the energy range of interest (20-200 keV$_{nr}$) for direct dark matter searches. The key novel feature of the ReD TPC is a readout system based on cryogenic Silicon Photomultipliers, which are employed and operated continuously for the first time in an argon TPC. Over the course of six months, the ReD TPC was commissioned and characterised under various operating conditions using $gamma$-ray and neutron sources, demonstrating remarkable stability of the optical sensors and reproducibility of the results. The scintillation gain and ionisation amplification of the TPC were measured to be $g_1 = (0.194 pm 0.013)$ PE/photon and $g_2 = (20.0 pm 0.9)$ PE/electron, respectively. The ratio of the ionisation to scintillation signals (S2/S1), instrumental for the positive identification of a candidate directional signal induced by WIMPs, has been investigated for both nuclear and electron recoils. At a drift field of 183 V/cm, an S2/S1 dispersion of 12% was measured for nuclear recoils of approximately 60-90 keV$_{nr}$, as compared to 18% for electron recoils depositing 60 keV of energy. The detector performance reported here meets the requirements needed to achieve the principal scientific goals of the ReD experiment in the search for a directional effect due to columnar recombination. A phenomenological parameterisation of the recombination probability in LAr is presented and employed for modeling the dependence of scintillation quenching and charge yield on the drift field for electron recoils between 50-500 keV and fields up to 1000 V/cm.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا