Do you want to publish a course? Click here

Clustering of infrared-bright dust-obscured galaxies revealed by the Hyper Suprime-Cam and WISE

160   0   0.0 ( 0 )
 Added by Yoshiki Toba
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present measurements of the clustering properties of a sample of infrared (IR) bright dust-obscured galaxies (DOGs). Combining 125 deg$^2$ of wide and deep optical images obtained with the Hyper Suprime-Cam on the Subaru Telescope and all-sky mid-IR (MIR) images taken with Wide-Field Infrared Survey Explorer, we have discovered 4,367 IR-bright DOGs with $(i - [22])_{rm AB}$ $>$ 7.0 and flux density at 22 $mu$m $>$ 1.0 mJy. We calculate the angular autocorrelation function (ACF) for a uniform subsample of 1411 DOGs with 3.0 mJy $<$ flux (22 $mu$m) $<$ 5.0 mJy and $i_{rm AB}$ $<$ 24.0. The ACF of our DOG subsample is well-fit with a single power-law, $omega (theta)$ = (0.010 $pm$ 0.003) $theta^{-0.9}$, where $theta$ in degrees. The correlation amplitude of IR-bright DOGs is larger than that of IR-faint DOGs, which reflects a flux-dependence of the DOG clustering, as suggested by Brodwin et al. (2008). We assume that the redshift distribution for our DOG sample is Gaussian, and consider 2 cases: (1) the redshift distribution is the same as IR-faint DOGs with flux at 22 $mu$m $<$ 1.0 mJy, mean and sigma $z$ = 1.99 $pm$ 0.45, and (2) $z$ = 1.19 $pm$ 0.30, as inferred from their photometric redshifts. The inferred correlation length of IR-bright DOGs is $r_0$ = 12.0 $pm$ 2.0 and 10.3 $pm$ 1.7 $h^{-1}$ Mpc, respectively. IR-bright DOGs reside in massive dark matter halos with a mass of $log [langle M_{mathrm{h}} rangle / (h^{-1} M_{odot})]$ = 13.57$_{-0.55}^{+0.50}$ and 13.65$_{-0.52}^{+0.45}$ in the two cases, respectively.



rate research

Read More

We present the photometric properties of a sample of infrared (IR) bright dust obscured galaxies (DOGs). Combining wide and deep optical images obtained with the Hyper Suprime-Cam (HSC) on the Subaru Telescope and all-sky mid-IR (MIR) images taken with Wide-Field Infrared Survey Explorer (WISE), we discovered 48 DOGs with $i - K_mathrm{s} > 1.2$ and $i - [22] > 7.0$, where $i$, $K_mathrm{s}$, and [22] represent AB magnitude in the $i$-band, $K_mathrm{s}$-band, and 22 $mu$m, respectively, in the GAMA 14hr field ($sim$ 9 deg$^2$). Among these objects, 31 ($sim$ 65 %) show power-law spectral energy distributions (SEDs) in the near-IR (NIR) and MIR regime, while the remainder show a NIR bump in their SEDs. Assuming that the redshift distribution for our DOGs sample is Gaussian, with mean and sigma $z$ = 1.99 $pm$ 0.45, we calculated their total IR luminosity using an empirical relation between 22 $mu$m luminosity and total IR luminosity. The average value of the total IR luminosity is (3.5 $pm$ 1.1) $times$ $10^{13}$ L$_{odot}$, which classifies them as hyper-luminous infrared galaxies (HyLIRGs). We also derived the total IR luminosity function (LF) and IR luminosity density (LD) for a flux-limited subsample of 18 DOGs with 22 $mu$m flux greater than 3.0 mJy and with $i$-band magnitude brighter than 24 AB magnitude. The derived space density for this subsample is log $phi$ = -6.59 $pm$ 0.11 [Mpc$^{-3}$]. The IR LF for DOGs including data obtained from the literature is well fitted by a double-power law. The derived lower limit for the IR LD for our sample is $rho_{mathrm{IR}}$ $sim$ 3.8 $times$ 10$^7$ [L$_{odot}$ Mpc$^{-3}$] and its contributions to the total IR LD, IR LD of all ultra-luminous infrared galaxies (ULIRGs), and that of all DOGs are $>$ 3 %, $>$ 9 %, and $>$ 15 %, respectively.
Understanding infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution. Japanese infrared satellite, AKARI, provided unique data sets to probe this both at low and high redshift; the AKARI all sky survey in 6 bands (9-160 $mu$m), and the AKARI NEP survey in 9 bands (2-24$mu$m). The AKARI performed all sky survey in 6 IR bands (9, 18, 65, 90, 140, and 160 $mu$m) with 3-10 times better sensitivity than IRAS, covering the crucial far-IR wavelengths across the peak of the dust emission. Combined with a better spatial resolution, we measure the total infrared luminosity ($L_{TIR}$) of individual galaxies, and thus, the total infrared luminosity density of the local Universe much more precisely than previous work. In the AKARI NEP wide field, AKARI has obtained deep images in the mid-infrared (IR), covering 5.4 deg$^2$. However, our previous work was limited to the central area of 0.25 deg$^2$ due to the lack of deep optical coverage. To rectify the situation, we used the newly advent Subaru telescopes Hyper Suprime-Cam to obtain deep optical images over the entire 5.4 deg$^2$ of the AKARI NEP wide field. With this deep and wide optical data, we, for the first time, can use the entire AKARI NEP wide data to construct restframe 8$mu$m, 12$mu$m, and total infrared (TIR) luminosity functions (LFs) at 0.15$<z<$2.2. A continuous 9-band filter coverage in the mid-IR wavelength (2.4, 3.2, 4.1, 7, 9, 11, 15, 18, and 24$mu$m) by the AKARI satellite allowed us to estimate restframe 8$mu$m and 12$mu$m luminosities without using a large extrapolation based on a SED fit, which was the largest uncertainty in previous work. By combining these two results, we reveal dust-hidden cosmic star formation history and AGN evolution from z=0 to z=2.2, all probed by the AKARI satellite.
WISE has discovered an extraordinary population of hyper-luminous dusty galaxies which are faint in the two bluer passbands ($3.4, mu$m and $4.6, mu$m) but are bright in the two redder passbands of WISE ($12, mu$m and $22, mu$m). We report on initial follow-up observations of three of these hot, dust-obscured galaxies, or Hot DOGs, using the CARMA and SMA interferometer arrays at submm/mm wavelengths. We report continuum detections at $sim$ 1.3 mm of two sources (WISE J014946.17+235014.5 and WISE J223810.20+265319.7, hereafter W0149+2350 and W2238+2653, respectively), and upper limits to CO line emission at 3 mm in the observed frame for two sources (W0149+2350 and WISE J181417.29+341224.8, hereafter W1814+3412). The 1.3 mm continuum images have a resolution of 1-2 arcsec and are consistent with single point sources. We estimate the masses of cold dust are 2.0$times 10^{8} M_{odot}$ for W0149+2350 and 3.9$times 10^{8} M_{odot}$ for W2238+2653, comparable to cold dust masses of luminous quasars. We obtain 2$sigma$ upper limits to the molecular gas masses traced by CO, which are 3.3$times 10^{10} M_{odot}$ and 2.3$times 10^{10} M_{odot}$ for W0149+2350 and W1814+3412, respectively. We also present high-resolution, near-IR imaging with WFC3 on the Hubble Space Telescope for W0149+2653 and with NIRC2 on Keck for W2238+2653. The near-IR images show morphological structure dominated by a single, centrally condensed source with effective radius less than 4 kpc. No signs of gravitational lensing are evident.
We present an overview of a deep transient survey of the COSMOS field with the Subaru Hyper Suprime-Cam (HSC). The survey was performed for the 1.77 deg$^2$ ultra-deep layer and 5.78 deg$^2$ deep layer in the Subaru Strategic Program over 6- and 4-month periods from 2016 to 2017, respectively. The ultra-deep layer shows a median depth per epoch of 26.4, 26.3, 26.0, 25.6, and 24.6 mag in $g$, $r$, $i$, $z$, and $y$ bands, respectively; the deep layer is $sim0.6$ mag shallower. In total, 1,824 supernova candidates were identified. Based on light curve fitting and derived light curve shape parameter, we classified 433 objects as Type Ia supernovae (SNe); among these candidates, 129 objects have spectroscopic or COSMOS2015 photometric redshifts and 58 objects are located at $z > 1$. Our unique dataset doubles the number of Type Ia SNe at $z > 1$ and enables various time-domain analyses of Type II SNe, high redshift superluminous SNe, variable stars, and active galactic nuclei.
We present the clustering analysis of photometric luminous red galaxies (LRGs) at a redshift range of $0.1leq z leq 1.05$ using $615,317$ photometric LRGs selected from the Hyper Suprime-Cam Subaru Strategic Program covering $sim124$ deg$^{2}$. Our sample covers a broad range of stellar masses and photometric redshifts and enables a halo occupation distribution analysis to study the redshift and stellar-mass dependence of dark halo properties of LRGs. We find a tight correlation between the characteristic dark halo mass to host central LRGs, $M_{min}$, and the number density of LRGs independently of redshifts, indicating that the formation of LRGs is associated with the global environment. The $M_{min}$ of LRGs depends only weakly on the stellar mass $M_{star}$ at $M_{star} lesssim 10^{10.75}h^{-2} M_{odot}$ at $0.3<z<1.05$, in contrast to the case for all photometrically selected galaxies for which $M_{min}$ shows significant dependence on $M_{star}$ even at low $M_{star}$. The weak stellar mass dependence is indicative of the dark halo mass being the key parameter for the formation of LRGs rather than the stellar mass. Our result suggests that the halo mass of $sim 10^{12.5 pm 0.2}h^{-1} M_{odot}$ is the critical mass for an efficient halo quenching due to the halo environment. We compare our result with the result of the hydrodynamical simulation to find that low-mass LRGs at $z sim 1$ will increase their stellar masses by an order magnitude from $z=1$ to $0$ through mergers and satellite accretions, and a large fraction of massive LRGs at $z<0.9$ consist of LRGs that are recently migrated from massive green valley galaxies or those evolved from less massive LRGs through mergers and satellite accretions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا