No Arabic abstract
WISE has discovered an extraordinary population of hyper-luminous dusty galaxies which are faint in the two bluer passbands ($3.4, mu$m and $4.6, mu$m) but are bright in the two redder passbands of WISE ($12, mu$m and $22, mu$m). We report on initial follow-up observations of three of these hot, dust-obscured galaxies, or Hot DOGs, using the CARMA and SMA interferometer arrays at submm/mm wavelengths. We report continuum detections at $sim$ 1.3 mm of two sources (WISE J014946.17+235014.5 and WISE J223810.20+265319.7, hereafter W0149+2350 and W2238+2653, respectively), and upper limits to CO line emission at 3 mm in the observed frame for two sources (W0149+2350 and WISE J181417.29+341224.8, hereafter W1814+3412). The 1.3 mm continuum images have a resolution of 1-2 arcsec and are consistent with single point sources. We estimate the masses of cold dust are 2.0$times 10^{8} M_{odot}$ for W0149+2350 and 3.9$times 10^{8} M_{odot}$ for W2238+2653, comparable to cold dust masses of luminous quasars. We obtain 2$sigma$ upper limits to the molecular gas masses traced by CO, which are 3.3$times 10^{10} M_{odot}$ and 2.3$times 10^{10} M_{odot}$ for W0149+2350 and W1814+3412, respectively. We also present high-resolution, near-IR imaging with WFC3 on the Hubble Space Telescope for W0149+2653 and with NIRC2 on Keck for W2238+2653. The near-IR images show morphological structure dominated by a single, centrally condensed source with effective radius less than 4 kpc. No signs of gravitational lensing are evident.
We present the photometric properties of a sample of infrared (IR) bright dust obscured galaxies (DOGs). Combining wide and deep optical images obtained with the Hyper Suprime-Cam (HSC) on the Subaru Telescope and all-sky mid-IR (MIR) images taken with Wide-Field Infrared Survey Explorer (WISE), we discovered 48 DOGs with $i - K_mathrm{s} > 1.2$ and $i - [22] > 7.0$, where $i$, $K_mathrm{s}$, and [22] represent AB magnitude in the $i$-band, $K_mathrm{s}$-band, and 22 $mu$m, respectively, in the GAMA 14hr field ($sim$ 9 deg$^2$). Among these objects, 31 ($sim$ 65 %) show power-law spectral energy distributions (SEDs) in the near-IR (NIR) and MIR regime, while the remainder show a NIR bump in their SEDs. Assuming that the redshift distribution for our DOGs sample is Gaussian, with mean and sigma $z$ = 1.99 $pm$ 0.45, we calculated their total IR luminosity using an empirical relation between 22 $mu$m luminosity and total IR luminosity. The average value of the total IR luminosity is (3.5 $pm$ 1.1) $times$ $10^{13}$ L$_{odot}$, which classifies them as hyper-luminous infrared galaxies (HyLIRGs). We also derived the total IR luminosity function (LF) and IR luminosity density (LD) for a flux-limited subsample of 18 DOGs with 22 $mu$m flux greater than 3.0 mJy and with $i$-band magnitude brighter than 24 AB magnitude. The derived space density for this subsample is log $phi$ = -6.59 $pm$ 0.11 [Mpc$^{-3}$]. The IR LF for DOGs including data obtained from the literature is well fitted by a double-power law. The derived lower limit for the IR LD for our sample is $rho_{mathrm{IR}}$ $sim$ 3.8 $times$ 10$^7$ [L$_{odot}$ Mpc$^{-3}$] and its contributions to the total IR LD, IR LD of all ultra-luminous infrared galaxies (ULIRGs), and that of all DOGs are $>$ 3 %, $>$ 9 %, and $>$ 15 %, respectively.
The WISE mission has unveiled a rare population of high-redshift ($z=1-4.6$), dusty, hyper-luminous galaxies, with infrared luminosities $L_{rm IR} > 10^{13}~L_{odot}$, and sometimes exceeding $10^{14}~L_{odot}$. Previous work has shown that their dust temperatures and overall far-IR SEDs are significantly hotter than expected for star-formation. We present here an analysis of the rest-frame optical through mid-IR SEDs for a large sample of these so-called Hot, Dust-Obscured Galaxies (Hot DOGs). We find that the SEDs of Hot DOGs are generally well modeled by the combination of a luminous, yet obscured AGN that dominates the rest-frame emission at $lambda > 1murm m$ and the bolometric luminosity output, and a less luminous host galaxy that is responsible for the bulk of the rest optical/UV emission. Even though the stellar mass of the host galaxies may be as large as $10^{11}-10^{12}~M_{odot}$, the AGN emission, with luminosities comparable to those of the most luminous QSOs known, require that either Hot DOGs have black hole masses significantly in excess of the local relations, or that they radiate significantly above the Eddington limit. We show that, while rare, the number density of Hot DOGs is comparable to that of equally luminous but unobscured (i.e., Type 1) QSOs. This is inconsistent with the trend of a diminishing fraction of obscured objects with increasing luminosity found for less luminous QSOs, possibly indicating a reversal in this relation at high luminosity, and that Hot DOGs are not the torus-obscured counterparts of the known optically selected, largely unobscured Hyper-Luminous QSOs. Hot DOGs may represent a different type of galaxy and thus a new component of the galaxy evolution paradigm. Finally, we discuss the environments of Hot DOGs and show that these objects are in regions as dense as those of known high-redshift proto-clusters.(Abridged)
Previous studies have shown that WISE-selected hyperluminous, hot dust-obscured galaxies (Hot DOGs) are powered by highly dust-obscured, possibly Compton-thick AGNs. High obscuration provides us a good chance to study the host morphology of the most luminous AGNs directly. We analyze the host morphology of 18 Hot DOGs at $zsim3$ using Hubble Space Telescope/WFC3 imaging. We find that Hot DOGs have a high merger fraction ($62pm 14 %$). By fitting the surface brightness profiles, we find that the distribution of Sersic indices in our Hot DOG sample peaks around 2, which suggests that most of Hot DOGs have transforming morphologies. We also derive the AGN bolometric luminosity ($sim10^{14}L_odot$) of our Hot DOG sample by using IR SEDs decomposition. The derived merger fraction and AGN bolometric luminosity relation is well consistent with the variability-based model prediction (Hickox et al. 2014). Both the high merger fraction in IR-luminous AGN sample and relatively low merger fraction in UV/optical-selected, unobscured AGN sample can be expected in the merger-driven evolutionary model. Finally, we conclude that Hot DOGs are merger-driven and may represent a transit phase during the evolution of massive galaxies, transforming from the dusty starburst dominated phase to the unobscured QSO phase.
We present measurements of the clustering properties of a sample of infrared (IR) bright dust-obscured galaxies (DOGs). Combining 125 deg$^2$ of wide and deep optical images obtained with the Hyper Suprime-Cam on the Subaru Telescope and all-sky mid-IR (MIR) images taken with Wide-Field Infrared Survey Explorer, we have discovered 4,367 IR-bright DOGs with $(i - [22])_{rm AB}$ $>$ 7.0 and flux density at 22 $mu$m $>$ 1.0 mJy. We calculate the angular autocorrelation function (ACF) for a uniform subsample of 1411 DOGs with 3.0 mJy $<$ flux (22 $mu$m) $<$ 5.0 mJy and $i_{rm AB}$ $<$ 24.0. The ACF of our DOG subsample is well-fit with a single power-law, $omega (theta)$ = (0.010 $pm$ 0.003) $theta^{-0.9}$, where $theta$ in degrees. The correlation amplitude of IR-bright DOGs is larger than that of IR-faint DOGs, which reflects a flux-dependence of the DOG clustering, as suggested by Brodwin et al. (2008). We assume that the redshift distribution for our DOG sample is Gaussian, and consider 2 cases: (1) the redshift distribution is the same as IR-faint DOGs with flux at 22 $mu$m $<$ 1.0 mJy, mean and sigma $z$ = 1.99 $pm$ 0.45, and (2) $z$ = 1.19 $pm$ 0.30, as inferred from their photometric redshifts. The inferred correlation length of IR-bright DOGs is $r_0$ = 12.0 $pm$ 2.0 and 10.3 $pm$ 1.7 $h^{-1}$ Mpc, respectively. IR-bright DOGs reside in massive dark matter halos with a mass of $log [langle M_{mathrm{h}} rangle / (h^{-1} M_{odot})]$ = 13.57$_{-0.55}^{+0.50}$ and 13.65$_{-0.52}^{+0.45}$ in the two cases, respectively.
We present VLT/XSHOOTER rest-frame UV-optical spectra of 10 Hot Dust-Obscured Galaxies (Hot DOGs) at $zsim2$ to investigate AGN diagnostics and to assess the presence and effect of ionized gas outflows. Most Hot DOGs in this sample are narrow-line dominated AGN (type 1.8 or higher), and have higher Balmer decrements than typical type 2 quasars. Almost all (8/9) sources show evidence for ionized gas outflows in the form of broad and blueshifted [O III] profiles, and some sources have such profiles in H$alpha$ (5/7) or [O II] (3/6). Combined with the literature, these results support additional sources of obscuration beyond the simple torus invoked by AGN unification models. Outflow rates derived from the broad [O III] line ($rm gtrsim10^{3},M_{odot},yr^{-1}$) are greater than the black hole accretion and star formation rates, with feedback efficiencies ($sim0.1-1%$) consistent with negative feedback to the host galaxys star formation in merger-driven quasar activity scenarios. We find the broad emission lines in luminous, obscured quasars are often better explained by outflows within the narrow line region, and caution that black hole mass estimates for such sources in the literature may have substantial uncertainty. Regardless, we find lower bounds on the Eddington ratio for Hot DOGs near unity.