Do you want to publish a course? Click here

A Novel Framework based on SVDD to Classify Water Saturation from Seismic Attributes

375   0   0.0 ( 0 )
 Added by Soumi Chaki
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Water saturation is an important property in reservoir engineering domain. Thus, satisfactory classification of water saturation from seismic attributes is beneficial for reservoir characterization. However, diverse and non-linear nature of subsurface attributes makes the classification task difficult. In this context, this paper proposes a generalized Support Vector Data Description (SVDD) based novel classification framework to classify water saturation into two classes (Class high and Class low) from three seismic attributes seismic impedance, amplitude envelop, and seismic sweetness. G-metric means and program execution time are used to quantify the performance of the proposed framework along with established supervised classifiers. The documented results imply that the proposed framework is superior to existing classifiers. The present study is envisioned to contribute in further reservoir modeling.



rate research

Read More

Evaluation of hydrocarbon reservoir requires classification of petrophysical properties from available dataset. However, characterization of reservoir attributes is difficult due to the nonlinear and heterogeneous nature of the subsurface physical properties. In this context, present study proposes a generalized one class classification framework based on Support Vector Data Description (SVDD) to classify a reservoir characteristic water saturation into two classes (Class high and Class low) from four logs namely gamma ray, neutron porosity, bulk density, and P sonic using an imbalanced dataset. A comparison is carried out among proposed framework and different supervised classification algorithms in terms of g metric means and execution time. Experimental results show that proposed framework has outperformed other classifiers in terms of these performance evaluators. It is envisaged that the classification analysis performed in this study will be useful in further reservoir modeling.
Generalization is a central problem in Machine Learning. Most prediction methods require careful calibration of hyperparameters carried out on a hold-out textit{validation} dataset to achieve generalization. The main goal of this paper is to present a novel approach based on a new measure of risk that allows us to develop novel fully automatic procedures for generalization. We illustrate the pertinence of this new framework in the regression problem. The main advantages of this new approach are: (i) it can simultaneously train the model and perform regularization in a single run of a gradient-based optimizer on all available data without any previous hyperparameter tuning; (ii) this framework can tackle several additional objectives simultaneously (correlation, sparsity,...) $via$ the introduction of regularization parameters. Noticeably, our approach transforms hyperparameter tuning as well as feature selection (a combinatorial discrete optimization problem) into a continuous optimization problem that is solvable via classical gradient-based methods ; (iii) the computational complexity of our methods is $O(npK)$ where $n,p,K$ denote respectively the number of observations, features and iterations of the gradient descent algorithm. We observe in our experiments a significantly smaller runtime for our methods as compared to benchmark methods for equivalent prediction score. Our procedures are implemented in PyTorch (code is available for replication).
Performance of machine learning algorithms depends critically on identifying a good set of hyperparameters. While recent approaches use Bayesian optimization to adaptively select configurations, we focus on speeding up random search through adaptive resource allocation and early-stopping. We formulate hyperparameter optimization as a pure-exploration non-stochastic infinite-armed bandit problem where a predefined resource like iterations, data samples, or features is allocated to randomly sampled configurations. We introduce a novel algorithm, Hyperband, for this framework and analyze its theoretical properties, providing several desirable guarantees. Furthermore, we compare Hyperband with popular Bayesian optimization methods on a suite of hyperparameter optimization problems. We observe that Hyperband can provide over an order-of-magnitude speedup over our competitor set on a variety of deep-learning and kernel-based learning problems.
Bayesian reinforcement learning (BRL) offers a decision-theoretic solution for reinforcement learning. While model-based BRL algorithms have focused either on maintaining a posterior distribution on models or value functions and combining this with approximate dynamic programming or tree search, previous Bayesian model-free value function distribution approaches implicitly make strong assumptions or approximations. We describe a novel Bayesian framework, Inferential Induction, for correctly inferring value function distributions from data, which leads to the development of a new class of BRL algorithms. We design an algorithm, Bayesian Backwards Induction, with this framework. We experimentally demonstrate that the proposed algorithm is competitive with respect to the state of the art.
We propose FlowSVDD -- a flow-based one-class classifier for anomaly/outliers detection that realizes a well-known SVDD principle using deep learning tools. Contrary to other approaches to deep SVDD, the proposed model is instantiated using flow-based models, which naturally prevents from collapsing of bounding hypersphere into a single point. Experiments show that FlowSVDD achieves comparable results to the current state-of-the-art methods and significantly outperforms related deep SVDD methods on benchmark datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا