No Arabic abstract
This paper concerns the smoothness of Tauberian constants of maximal operators in the discrete and ergodic settings. In particular, we define the discrete strong maximal operator $tilde{M}_S$ on $mathbb{Z}^n$ by [ tilde{M}_S f(m) := sup_{0 in R subset mathbb{R}^n}frac{1}{#(R cap mathbb{Z}^n)}sum_{ jin R cap mathbb{Z}^n} |f(m+j)|,qquad min mathbb{Z}^n, ] where the supremum is taken over all open rectangles in $mathbb{R}^n$ containing the origin whose sides are parallel to the coordinate axes. We show that the associated Tauberian constant $tilde{C}_S(alpha)$, defined by [ tilde{C}_S(alpha) := sup_{substack{E subset mathbb{Z}^n 0 < #E < infty} } frac{1}{#E}#{m in mathbb{Z}^n:, tilde{M}_Schi_E(m) > alpha}, ] is Holder continuous of order $1/n$. Moreover, letting $U_1, ldots, U_n$ denote a non-periodic collection of commuting invertible transformations on the non-atomic probability space $(Omega, Sigma, mu)$ we define the associated maximal operator $M_S^ast$ by [ M^ast_{S}f(omega) := sup_{0 in R subset mathbb{R}^n}frac{1}{#(R cap mathbb{Z}^n)}sum_{(j_1, ldots, j_n)in R}|f(U_1^{j_1}cdots U_n^{j_n}omega)|,qquad omegainOmega. ] Then the corresponding Tauberian constant $C^ast_S(alpha)$, defined by [ C^ast_S(alpha) := sup_{substack{E subset Omega mu(E) > 0}} frac{1}{mu(E)}mu({omega in Omega :, M^ast_Schi_E(omega) > alpha}), ] also satisfies $C^ast_S in C^{1/n}(0,1).$ We will also see that, in the case $n=1$, that is in the case of a single invertible, measure preserving transformation, the smoothness of the corresponding Tauberian constant is characterized by the operator enabling arbitrarily long orbits of sets of positive measure.
Let $mathsf M$ and $mathsf M _{mathsf S}$ respectively denote the Hardy-Littlewood maximal operator with respect to cubes and the strong maximal operator on $mathbb{R}^n$, and let $w$ be a nonnegative locally integrable function on $mathbb{R}^n$. We define the associated Tauberian functions $mathsf{C}_{mathsf{HL},w}(alpha)$ and $mathsf{C}_{mathsf{S},w}(alpha)$ on $(0,1)$ by [ mathsf{C}_{mathsf{HL},w}(alpha) :=sup_{substack{E subset mathbb{R}^n 0 < w(E) < infty}} frac{1}{w(E)}w({x in mathbb{R}^n : mathsf M chi_E(x) > alpha}) ] and [ mathsf{C}_{mathsf{S},w}(alpha) := sup_{substack{E subset mathbb{R}^n 0 < w(E) < infty}} frac{1}{w(E)}w({x in mathbb{R}^n : mathsf M _{mathsf S}chi_E(x) > alpha}). ] Utilizing weighted Solyanik estimates for $mathsf M$ and $mathsf M_{mathsf S}$, we show that the function $mathsf{C}_{mathsf{HL},w} $ lies in the local Holder class $C^{(c_n[w]_{A_{infty}})^{-1}}(0,1)$ and $mathsf{C}_{mathsf{S},w} $ lies in the local Holder class $C^{(c_n[w]_{A_{infty}^ast})^{-1}}(0,1)$, where the constant $c_n>1$ depends only on the dimension $n$.
This paper provides a necessary and sufficient condition on Tauberian constants associated to a centered translation invariant differentiation basis so that the basis is a density basis. More precisely, given $x in mathbb{R}^n$, let $mathcal{B} = cup_{x in mathbb{R}^n} mathcal{B}(x)$ be a collection of bounded open sets in $mathbb{R}^n$ containing $x$. Suppose moreover that these collections are translation invariant in the sense that, for any two points $x$ and $y$ in $mathbb{R}^n$ we have that $mathcal{B}(x + y) = {R + y : R in mathcal{B}(x)}.$ Associated to these collections is a maximal operator $M_{mathcal{B}}$ given by $$M_{mathcal{B}}f(x) :=sup_{R in mathcal{B}(x)} frac{1}{|R|} int_R |f|.$$ The Tauberian constants $C_{mathcal{B}}(alpha)$ associated to $M_{mathcal{B}}$ are given by $$C_{mathcal{B}}(alpha) :=sup_{E subset mathbb{R}^n atop 0 < |E| < infty} frac{1}{|E|}|{x in mathbb{R}^n :, M_{mathcal{B}}chi_E(x) > alpha}|.$$ Given $0 < r < infty$, we set $mathcal{B}_r(x) :={R in mathcal{B}(x) : mathrm{diam } R < r}$, and let $mathcal{B}_r :=cup_{x in mathbb{R}^n} mathcal{B}_r (x).$ We prove that $mathcal{B}$ is a density basis if and only if, given $0 < alpha < infty$, there exists $ r = r(alpha) >0$ such that $C_{mathcal{B}_r}(alpha) < infty$. Subsequently, we construct a centered translation invariant density basis $mathcal{B} = cup_{x in mathbb{R}^n} mathcal{B}(x)$ such that there does not exist any $0 < r$ satisfying $C_{mathcal{B}_{r}}(alpha) < infty$ for all $0 < alpha < 1$.
Let $p(cdot): mathbb R^nto(0,1]$ be a variable exponent function satisfying the globally $log$-Holder continuous condition and $L$ a non-negative self-adjoint operator on $L^2(mathbb R^n)$ whose heat kernels satisfying the Gaussian upper bound estimates. Let $H_L^{p(cdot)}(mathbb R^n)$ be the variable exponent Hardy space defined via the Lusin area function associated with the heat kernels ${e^{-t^2L}}_{tin (0,infty)}$. In this article, the authors first establish the atomic characterization of $H_L^{p(cdot)}(mathbb R^n)$; using this, the authors then obtain its non-tangential maximal function characterization which, when $p(cdot)$ is a constant in $(0,1]$, coincides with a recent result by Song and Yan [Adv. Math. 287 (2016), 463-484] and further induces the radial maximal function characterization of $H_L^{p(cdot)}(mathbb R^n)$ under an additional assumption that the heat kernels of $L$ have the Holder regularity.
Let $U_1, ldots, U_n$ be a collection of commuting measure preserving transformations on a probability space $(Omega, Sigma, mu)$. Associated with these measure preserving transformations is the ergodic strong maximal operator $mathsf M ^ast _{mathsf S}$ given by [ mathsf M ^ast _{mathsf S} f(omega) := sup_{0 in R subset mathbb{R}^n}frac{1}{#(R cap mathbb{Z}^n)}sum_{(j_1, ldots, j_n) in Rcap mathbb{Z}^n}big|f(U_1^{j_1}cdots U_n^{j_n}omega)big|, ] where the supremum is taken over all open rectangles in $mathbb{R}^n$ containing the origin whose sides are parallel to the coordinate axes. For $0 < alpha < 1$ we define the sharp Tauberian constant of $mathsf M ^ast _{mathsf S}$ with respect to $alpha$ by [ mathsf C ^ast _{mathsf S} (alpha) := sup_{substack{E subset Omega mu(E) > 0}}frac{1}{mu(E)}mu({omega in Omega : mathsf M ^ast _{mathsf S} chi_E (omega) > alpha}). ] Motivated by previous work of A. A. Solyanik and the authors regarding Solyanik estimates for the geometric strong maximal operator in harmonic analysis, we show that the Solyanik estimate [ lim_{alpha rightarrow 1}mathsf C ^ast _{mathsf S}(alpha) = 1 ] holds, and that in particular we have [mathsf C ^ast _{mathsf S}(alpha) - 1 lesssim_n (1 - frac{1}{alpha})^{1/n}] provided that $alpha$ is sufficiently close to $1$. Solyanik estimates for centered and uncentered ergodic Hardy-Littlewood maximal operators associated with $U_1, ldots, U_n$ are shown to hold as well. Further directions for research in the field of ergodic Solyanik estimates are also discussed.
We prove new $ell ^{p} (mathbb Z ^{d})$ bounds for discrete spherical averages in dimensions $ d geq 5$. We focus on the case of lacunary radii, first for general lacunary radii, and then for certain kinds of highly composite choices of radii. In particular, if $ A _{lambda } f $ is the spherical average of $ f$ over the discrete sphere of radius $ lambda $, we have begin{equation*} bigllVert sup _{k} lvert A _{lambda _k} f rvert bigrrVert _{ell ^{p} (mathbb Z ^{d})} lesssim lVert frVert _{ell ^{p} (mathbb Z ^{d})}, qquad tfrac{d-2} {d-3} < p leq tfrac{d} {d-2}, dgeq 5, end{equation*} for any lacunary sets of integers $ {lambda _k ^2 }$. We follow a style of argument from our prior paper, addressing the full supremum. The relevant maximal operator is decomposed into several parts; each part requires only one endpoint estimate.