No Arabic abstract
We develop methods to deal with non-dynamical contributions to event-by-event fluctuation measurements of net-particle numbers in relativistic nuclear collisions. These contributions arise from impact parameter fluctuations and from the requirement of overall net-baryon number or net-charge conservation and may mask the dynamical fluctuations of interest, such as those due to critical endpoints in the QCD phase diagram. Within a model of independent particle sources we derive formulae for net-particle fluctuations and develop a rigorous approach to take into account contributions from participant fluctuations in realistic experimental environments and at any cumulant order. Interestingly, contributions from participant fluctuations to the second and third cumulants of net-baryon distributions are found to vanish at mid-rapidity for LHC energies while higher cumulants of even order are non-zero even when the net-baryon number at mid-rapidity is zero. At lower beam energies the effect of participant fluctuations increases and induces spurious higher moments. The necessary corrections become large and need to be carefully taken into account before comparison to theory. We also provide a procedure for selecting the optimal phase-space coverage of particles for fluctuation analyses and discuss quantitatively the necessary correction due to global charge conservation.
In this work we investigate how event-by-event hydrodynamics fluctuations affect the nuclear suppression factor and elliptic flow of heavy flavor mesons and non-photonic electrons. We use a 2D+1 Lagrangian ideal hydrodynamic code on an event-by-event basis in order to compute local temperature and flow profiles. Using a strong coupling inspired energy loss parametrization on top of the evolving space-time energy density distributions we are able to propagate the heavy quarks inside the medium until the freeze-out temperature is reached and a Pythia modeling of hadronization takes place. The resulting D$^0$ and heavy-flavor electron yield is compared with recent experimental data for $R_text{AA}$ and $v_2$ from the STAR and Phenix collaborations. In addition we present preditions for the higher order Fourier harmonic coefficients $v_3(p_T)$ of heavy-flavor electrons at RHICs $sqrt{S_text{NN}} = 200$ GeV collisions.
The evolution of the system created in a high energy nuclear collision is very sensitive to the fluctuations in the initial geometry of the system. In this letter we show how one can utilize these large fluctuations to select events corresponding to a specific initial shape. Such an event shape engineering opens many new possibilities in quantitative test of the theory of high energy nuclear collisions and understanding the properties of high density hot QCD matter.
Relativistic heavy ion collisions, which are performed at large experimental programs such as Relativistic Heavy Ion Colliders (RHIC) STAR experiment and the Large Hadron Colliders (LHC) experiments, can create an extremely hot and dense state of the matter known as the quark gluon plasma (QGP). A huge amount of sub-nucleonic particles are created in the collision processes and their interaction and subsequent evolution after the collision takes place is at the core of the understanding of the matter that builds up the Universe. It has recently been shown that event-by-event fluctuations in the spatial distribution between different collision events have great impact on the particle distributions that are measured after the evolution of the created system. Specifically, these distributions are greatly responsible for generating the observed azimuthal anisotropy in measurements. Furthermore, the eventual cooling and expansion of the fluctuating system can become very complex due to lumps of energy density and temperature, which affects the interaction of the particles that traverse the medium. In this configuration, heavy flavor particles play a special role, as they are generally created at the initial stages of the process and have properties that allow them to retain memory from the interactions within the whole evolution of the system. However, the comparison between experimental data and theoretical or phenomenological predictions on the heavy flavor sector cannot fully explain the heavy quarks coupling with the medium and their subsequent hadronization process. [Full abstract in file]
We study the influence of global baryon number conservation on the non-critical baseline of net baryon cumulants in heavy-ion collisions in a given acceptance, accounting for the asymmetry between the mean-numbers of baryons and antibaryons. We derive the probability distribution of net baryon number in a restricted phase space from the canonical partition function that incorporates exact conservation of baryon number in the full system. Furthermore, we provide tools to compute cumulants of any order from the generating function of uncorrelated baryons constrained by exact baryon number conservation. The results are applied to quantify the non-critical baseline for cumulants of net proton number fluctuations obtained in heavy-ion collisions by the STAR collaboration at different RHIC energies and by the ALICE collaboration at the LHC. Furthermore, volume fluctuations are added by a Monte Carlo procedure based on the centrality dependence of charged particle production as measured experimentally. Compared to the predictions based on the hadron resonance gas model or Skellam distribution a clear suppression of fluctuations is observed due to exact baryon-number conservation. The suppression increases with the order of the cumulant and towards lower collision energies. Predictions for net proton cumulants up to the eight order in heavy-ion collisions are given for experimentally accessible collision energies.
In this paper heavy quark energy loss models are embedded in full event-by-event viscous hydrodynamic simulations to investigate the nuclear suppression factor and azimuthal anisotropy of D$^0$ mesons in PbPb collisions at 5.02 TeV in the $p_T$ range 8-40 GeV. In our model calculations, the $R_text{AA}$ of D$^0$ mesons is consistent with experimental data from the CMS experiment. We present the first calculations of heavy flavor cumulants $v_2{2}$ and $v_3{2}$ (and also discuss $v_2{4}$), which is also consistent with experimental data. Event-shape engineering techniques are used to compute the event-by-event correlation between the soft hadron $v_n$ and the heavy meson $v_n$. We predict a linear correlation between these observables on an event-by-event basis.