Some general remarks about integral transform approaches to response functions are made. Their advantage for calculating cross sections at energies in the continuum is stressed. In particular we discuss the class of kernels that allow calculations of the transform by matrix diagonalization. A particular set of such kernels, namely the wavelets, is tested in a model study.
The LIT approach is reviewed both for inclusive and exclusive reactions. It is shown that the method reduces a continuum state problem to a bound-state-like problem, which then can be solved with typical bound-state techniques. The LIT approach opens up the possibility to perform ab initio calculations of reactions also for those particle systems which presently are out of reach in conventional approaches with explicit calculations of many-body continuum wave functions. Various LIT applications are discussed ranging from particle systems with two nucleons up to particle systems with seven nucleons.
The Lorentz integral transform method is briefly reviewed. The issue of the inversion of the transform, and in particular its ill-posedness, is addressed. It is pointed out that the mathematical term ill-posed is misleading and merely due to a historical misconception. In this connection standard regularization procedures for the solution of the integral transform problem are presented. In particular a recent one is considered in detail and critical comments on it are provided. In addition a general remark concerning the concept of the Lorentz integral transform as a method with a controlled resolution is made.
A brief outline of the Lorentz Integral Transform (LIT) method is given. The method is well established and allows to treat reactions into the many-body continuum with bound-state like techniques. The energy resolution that can be achieved is studied by means of a simple two-body reaction. From the discussion it will become clear that the LIT method is an approach with a controlled resolution and that there is no principle problem to even resolve narrow resonances in the many-body continuum. As an example the isoscalar monopole resonance of 4He is considered. The importance of the choice of a proper basis for the expansion of the LIT states is pointed out. Employing such a basis a width of 180(70) keV is found for the 4He isoscalar monopole resonance when using a simple central nucleon-nucleon potential model.
We make a thorough study of the process of three body kaon absorption in nuclei, in connection with a recent FINUDA experiment which claims the existence of a deeply bound kaonic state from the observation of a peak in the Lambda d invariant mass distribution following K- absorption on Li6. We show that the peak is naturally explained in terms of K- absorption from three nucleons leaving the rest as spectators. We can also reproduce all the other observables measured in the same experiment and used to support the hypothesis of the deeply bound kaon state. Our study also reveals interesting aspects of kaon absorption in nuclei, a process that must be understood in order to make progress in the search for K- deeply bound states in nuclei.
The application of the Lorentz integral transform (LIT) method to photon scattering off nuclei is presented in general. As an example, elastic photon scattering off the deuteron in the unretarded dipole approximation is considered using the LIT method. The inversion of the integral transform is discussed in detail paying particular attention to the high-energy contributions in the resonance term. The obtained E1-polarizabilities are compared to results from the literature. The corresponding theoretical cross section is confronted with experimental results confirming, as already known from previous studies, that the E1-contribution is the most important one at lower energies.