No Arabic abstract
In this work we derive some general features of the redshift measured by radially moving observers in the black hole background. Let observer 1 cross the black hole horizon emitting of a photon while observer 2 crossing the same horizon later receives it. We show that if (i) the horizon is the outer one (event horizon) and (ii) it is nonextremal, received frequency is redshifted. This generalizes previous recent results in literature. For the inner horizon (like in the Reissner-Nordstr{o}m metric) the frequency is blueshifted. If the horizon is extremal, the frequency does not change. We derive explicit formulas describing the frequency shift in generalized Kruskal- and Lemaitre-like coordinates.
There is a compelling connection between equations of gravity near the black-hole horizon and fluid-equations. The correspondence suggests a novel way to unearth microscopic degrees of freedom of the event horizons. In this work, we construct a microscopic model of the horizon-fluid of a 4-D asymptotically flat, quasi-stationary, Einstein black-holes. We demand that the microscopic model satisfies two requirements: First, the model should incorporate the near-horizon symmetries (S1 diffeomorphism) of a stationary black-hole. Second, the model possesses a mass gap. We show that the Eight-vertex Baxter model satisfies both the requirements. In the continuum limit, the Eight-vertex Baxter model is a massive free Fermion theory that is integrable with an infinite number of conserved charges. We show that this microscopic model explains the origin of the macroscopic properties of the horizon-fluid like bulk viscosity. Finally, we connect this model with Damours analysis and determine the mass-gap in the microscopic model.
For the Schwarzschild black hole the Bekenstein-Hawking entropy is proportional to the area of the event horizon. For the black holes with two horizons the thermodynamics is not very clear, since the role of the inner horizons is not well established. Here we calculate the entropy of the Reissner-Nordstrom black hole and of the Kerr black hole, which have two horizons. For the spherically symmetric Reissner-Nordstrom black hole we used several different approaches. All of them give the same result for the entropy and for the corresponding temperature of the thermal Hawking radiation. The entropy is not determined by the area of the outer horizon, and it is not equal to the sum of the entropies of two horizons. It is determined by the correlations between the two horizons, due to which the total entropy of the black hole and the temperature of Hawking radiation depend only on mass $M$ of the black hole and do not depend on the black hole charge $Q$. For the Kerr and Kerr-Newman black holes it is shown that their entropy has the similar property: it depends only on mass $M$ of the black hole and does not depend on the angular momentum $J$ and charge $Q$.
We consider dynamics of a quantum scalar field, minimally coupled to classical gravity, in the near-horizon region of a Schwarzschild black-hole. It is described by a static Klein-Gordon operator which in the near-horizon region reduces to a scale invariant Hamiltonian of the system. This Hamiltonian is not essentially self-adjoint, but it admits a one-parameter family of self-adjoint extension. The time-energy uncertainty relation, which can be related to the thermal black-hole mass fluctuations, requires explicit construction of a time operator near-horizon. We present its derivation in terms of generators of the affine group. Matrix elements involving the time operator should be evaluated in the affine coherent state representation.
We consider static axially symmetric Einstein-Yang-Mills black holes in the isolated horizon formalism. The mass of these hairy black holes is related to the mass of the corresponding particle-like solutions by the horizon mass. The hairy black holes violate the ``quasi-local uniqueness conjecture, based on the horizon charges.
In an ongoing effort to explore quantum effects on the interior geometry of black holes, we explicitly compute the semiclassical flux components $leftlangle T_{uu}rightrangle _{ren}$ and $leftlangle T_{vv}rightrangle _{ren}$ ($u$ and $v$ being the standard Eddington coordinates) of the renormalized stress-energy tensor for a minimally-coupled massless quantum scalar field, in the vicinity of the inner horizon (IH) of a Reissner-Nordstrom black hole. These two flux components seem to dominate the effect of backreaction in the IH vicinity; and furthermore, their regularization procedure reveals remarkable simplicity. We consider the Hartle-Hawking and Unruh quantum states, the latter corresponding to an evaporating black hole. In both quantum states, we compute $leftlangle T_{uu}rightrangle _{ren}$ and $leftlangle T_{vv}rightrangle _{ren}$ in the IH vicinity for a wide range of $Q/M$ values. We find that both $leftlangle T_{uu}rightrangle _{ren}$ and $leftlangle T_{vv}rightrangle _{ren}$ attain finite asymptotic values at the IH. Depending on $Q/M$, these asymptotic values are found to be either positive or negative (or vanishing in-between). Note that having a nonvanishing $leftlangle T_{vv}rightrangle _{ren}$ at the IH implies the formation of a curvature singularity on its ingoing section, the Cauchy horizon. Motivated by these findings, we also take initial steps in the exploration of the backreaction effect of these semiclassical fluxes on the near-IH geometry.