No Arabic abstract
We present an exhaustive theoretical analysis of a double-loop Josephson proximity interferometer, as the one recently realized by Strambini et al. for the control of the Andreev spectrum via an external magnetic field. This system, called $omega$-SQUIPT, consists of a T-shaped diffusive normal metal (N) attached to three superconductors (S) forming a double loop configuration. By using the quasiclassical Green function formalism, we calculate the local normalized density of states, the Josephson currents through the device and the dependence of the former on the length of the junction arms, the applied magnetic field and the S/N interface transparencies. We show that by tuning the fluxes through the double loop, the system undergoes transitions from a gapped to a gapless state. We also evaluate the Josephson currents flowing in the different arms as a function of magnetic fluxes and explore the quasi-particle transport, by considering a metallic probe tunnel-coupled to the Josephson junction and calculating its I-V characteristics. Finally, we study the performances of the $omega$-SQUIPT and its potential applications, by investigating its electrical and magnetometric properties.
We investigate the proximity effect in junctions between $N=3$ superconductors under commensurate voltage bias. The bias is chosen to highlight the role of transport processes that exchange multiple Cooper pairs coherently between more than two superconductors. Such non-local processes can be studied in the dc response, where local transport processes do not contribute. We focus on the proximity-induced normal density of states that we investigate in a wide parameter space. We reveal the presence of deep and highly tunable pseudogaps and other rich structures. These are due to a static proximity effect that is absent for $N=2$ and is sensitive to an emergent superconducting phase associated to non-local coherent transport. In comparison with results for $N=2$, we find similarities in the signature peaks of multiple Andreev reflections. We discuss the effect of electron-hole decoherence and of various types of junction asymmetries. Our predictions can be investigated experimentally using tunneling spectroscopy.
Josephson junctions with three or more superconducting leads have been predicted to exhibit topological effects in the presence of few conducting modes within the interstitial normal material. Such behavior, of relevance for topologically-protected quantum bits, would lead to specific transport features measured between terminals, with topological phase transitions occurring as a function of phase and voltage bias. Although conventional, two-terminal Josephson junctions have been studied extensively, multi-terminal devices have received relatively little attention to date. Motivated in part by the possibility to ultimately observe topological phenomena in multi-terminal Josephson devices, as well as their potential for coupling gatemon qubits, here we describe the superconducting features of a top-gated mesoscopic three-terminal Josephson device. The device is based on an InAs two-dimensional electron gas (2DEG) proximitized by epitaxial aluminum. We map out the transport properties of the device as a function of bias currents, top gate voltage and magnetic field. We find a very good agreement between the zero-field experimental phase diagram and a resistively and capacitively shunted junction (RCSJ) computational model.
We develop a protocol to determine the presence and extent of a topological phase with Majorana zero modes in a hybrid superconductor-semiconductor device. The protocol is based on conductance measurements in a three-terminal device with two normal leads and one superconducting lead. A radio-frequency technique acts as a proxy for the measurement of local conductance, allowing a rapid, systematic scan of the large experimental phase space of the device. Majorana zero modes cause zero bias conductance peaks at each end of the wire, so we identify promising regions of the phase space by filtering for this condition. To validate the presence of a topological phase, a subsequent measurement of the non-local conductance in these regions is used to detect a topological transition via the closing and reopening of the bulk energy gap. We define data analysis routines that allow for an automated and unbiased execution of the protocol. Our protocol is designed to screen out false positives, especially trivial Andreev bound states that mimic Majorana zero modes in local conductance. We apply the protocol to several examples of simulated data illustrating the detection of topological phases and the screening of false positives.
We present electrical transport experiments performed on submicron hybrid devices made of a ferromagnetic conductor (Co) and a superconducting (Al) electrode. The sample was patterned in order to separate the contributions of the Co conductor and of the Co-Al interface. We observed a strong influence of the Al electrode superconductivity on the resistance of the Co conductor. This effect is large only when the interface is highly transparent. We characterized the dependence of the observed resistance decrease on temperature, bias current and magnetic field. As the differential resistance of the ferromagnet exhibits a non-trivial asymmetry, we claim that the magnetic domain structure plays an important role in the electron transport properties of superconducting / ferromagnetic conductors.
We present measurements of the transport properties of hybrid structures consisting of a Kondo AuFe film and a superconducting Al film. The temperature dependence of the resistance indicates the existence of the superconducting proximity effect in the Kondo AuFe wires over the range of $sim0.5$ $mu$m. Electronic phase coherence in the Kondo AuFe wires has been confirmed by observing the Aharanov-Bohm effect in the magnetoresistance of the loop structure. The amplitude of the magnetoresistance oscillations shows a reentrant behavior with a maximum at $sim$ 870 mK, which results from an interplay between the Kondo effect and the superconducting proximity effect.