No Arabic abstract
We give evidence for intrinsic, defect-induced bulk paramagnetism in SiC by means of $^{13}$C and $^{29}$Si nuclear magnetic resonance (NMR) spectroscopy. The temperature dependence of the internal dipole-field distribution, probed by the spin part of the NMR Knight shift and the spectral linewidth, follows a Curie law and scales very well with the macroscopic DC susceptibility. In order to quantitatively analyze the NMR spectra, a microscopic model based on dipole-dipole interactions was developed. The very good agreement between these simulations and the NMR data establishes a direct relation between the frequency distribution of the spectral intensity and the corresponding real-space volumes of nuclear spins. The presented approach by NMR can be applied to a variety of similar materials and, thus, opens a new avenue for the microscopic exploration and exploitation of diluted bulk magnetism in semiconductors.
We present a detailed investigation of the magnetic properties in SiC single crystals bombarded with neon ions. Through careful measuring of the magnetization of virgin and irradiated SiC, we decompose the magnetization of SiC into paramagnetic, superparamagnetic, and ferromagnetic contributions. The ferromagnetic contribution persists well above room temperature and exhibits a pronounced magnetic anisotropy. We qualitatively explain the magnetic properties as a result of the intrinsic clustering tendency of defects.
We report a $^{75}$As nuclear magnetic resonance study in LaFeAsO single crystals, which undergoes nematic and antiferromagnetic transitions at $T_text{nem}sim 156$ K and $T_N sim 138$ K, respectively. Below $T_text{nem}$, the $^{75}$As spectrum splits sharply into two for an external magnetic field parallel to the orthorhombic $a$ or $b$ axis in the FeAs planes. Our analysis of the data demonstrates that the NMR line splitting arises from an electronically driven rotational symmetry breaking. The $^{75}$As spin-lattice relaxation rate as a function of temperature shows that spin fluctuations are strongly enhanced just below $T_text{nem}$. These NMR findings indicate that nematic order promotes spin fluctuations in magnetically ordered LaFeAsO, as observed in non-magnetic and superconducting FeSe. We conclude that the origin of nematicity is identical in both FeSe and LaFeAsO regardless of whether or not a long range magnetic order develops in the nematic state.
We have investigated the variation in the magnetization of highly ordered pyrolytic graphite (HOPG) after neutron irradiation, which introduces defects in the bulk sample and consequently gives rise to a large magnetic signal. We observe strong paramagnetism in HOPG, increasing with the neutron fluence. We correlate the induced paramagnetism with structural defects by comparison with density-functional theory calculations. In addition to the in-plane vacancies, the trans-planar defects also contribute to the magnetization. The lack of any magnetic order between the local moments is possibly due to the absence of hydrogen/nitrogen chemisorption, or the magnetic order cannot be established at all in the bulk form.
Nuclear magnetic resonance (NMR) was recently shown to measure the bulk band inversion of Bi$_2$Se$_3$ through changes in the $^{209}$Bi nuclear quadrupole interaction, and the corresponding tensor of the local electric field gradient was found to follow, surprisingly, the direction of the external magnetic field if the sample is rotated. This manifests a hidden property of the charge carriers in the bulk of this topological insulator, which is explored here with another material, Bi$_2$Te$_3$. It is found that two electric field gradients appear to be present at $^{209}$Bi, one rests with the lattice, as usual, while a second follows the external field if it is rotated with respect to the crystal axes. These electronic degrees of freedom correspond to an effective rotation of $j$-electrons, and their level life time is believed to be responsible for a new quadrupolar relaxation that should lead to other special properties including the electronic specific heat.
Ab initio total energy calculations show that the antiferromagnetic (111) order is not the ground state for the ideal CuMnSb Heusler alloy in contrast to the results of neutron diffraction experiments. It is known, that Heusler alloys usually contain various defects depending on the sample preparation. We have therefore investigated magnetic phases of CuMnSb assuming the most common defects which exist in real experimental conditions. The full-potential supercell approach and a Heisenberg model approach using the coherent potential approximation are adopted. The results of the total energy supercell calculations indicate that defects that bring Mn atoms close together promote the antiferromagnetic (111) structure already for a low critical defect concentrations ($approx$ 3%). A detailed study of exchange interactions between Mn-moments further supports the above stabilization mechanism. Finally, the stability of the antiferromagnetic (111) order is enhanced by inclusion of electron correlations in narrow Mn-bands. The present refinement structure analysis of neutron scattering experiment supports theoretical conclusions.