Do you want to publish a course? Click here

Disentangling defect-induced ferromagnetism in SiC

171   0   0.0 ( 0 )
 Added by Shengqiang Zhou
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a detailed investigation of the magnetic properties in SiC single crystals bombarded with neon ions. Through careful measuring of the magnetization of virgin and irradiated SiC, we decompose the magnetization of SiC into paramagnetic, superparamagnetic, and ferromagnetic contributions. The ferromagnetic contribution persists well above room temperature and exhibits a pronounced magnetic anisotropy. We qualitatively explain the magnetic properties as a result of the intrinsic clustering tendency of defects.



rate research

Read More

We give evidence for intrinsic, defect-induced bulk paramagnetism in SiC by means of $^{13}$C and $^{29}$Si nuclear magnetic resonance (NMR) spectroscopy. The temperature dependence of the internal dipole-field distribution, probed by the spin part of the NMR Knight shift and the spectral linewidth, follows a Curie law and scales very well with the macroscopic DC susceptibility. In order to quantitatively analyze the NMR spectra, a microscopic model based on dipole-dipole interactions was developed. The very good agreement between these simulations and the NMR data establishes a direct relation between the frequency distribution of the spectral intensity and the corresponding real-space volumes of nuclear spins. The presented approach by NMR can be applied to a variety of similar materials and, thus, opens a new avenue for the microscopic exploration and exploitation of diluted bulk magnetism in semiconductors.
The nature of the often reported room temperature ferromagnetism in transition metal doped oxides is still a matter of huge debate. Herein we report on room temperature ferromagnetism in high quality Co-doped ZnO (Zn1-xCoxO) bulk samples synthesized via standard solid-state reaction route. Reference paramagnetic Co-doped ZnO samples with low level of structural defects are subjected to heat treatments in a reductive atmosphere in order to introduce defects in the samples in a controlled way. A detailed structural analysis is carried out in order to characterize the induced defects and their concentration. The magnetometry revealed the coexistence of a paramagnetic and a ferromagnetic phase at room temperature in straight correlation with the structural properties. The saturation magnetization is found to increase with the intensification of the heat treatment, and, therefore, with the increase of the density of induced defects. The magnetic behavior is fully explained in terms of the bound magnetic polaron model. Based on the experimental findings, supported by theoretical calculations, we attribute the origin of the observed defect-induced-ferromagnetism to the ferromagnetic coupling between the Co ions mediated by magnetic polarons due to zinc interstitial defects.
183 - Gul Rahman 2015
Density functional theory with local spin density approximation has been used to propose possible room temperature ferromagnetism in N-doped NaCl-type BaO. Pristine BaO is a wide bandgap semiconductor, however, N induces a large density of states at the Fermi level in the nonmagnetic state, which suggests magnetic instability within the Stoner mean field model. The spin-polarized calculations show that N-doped BaO is a true half- metal, where N has a large magnetic moment, which is mainly localized around the N atoms and a small polarization at the O sites is also observed. The origin of magnetism is linked to the electronic structure. The ferromagnetic(FM) and antiferromagnetic (AFM) coupling between the N atoms in BaO reveal that doping N atoms have a FM ground state, and the calculated transition temperature ($T_{C}$), within the Heisenberg mean field theory, theorizes possible room temperature FM in N-doped BaO. Nitrogen also induces ferromagnetism when doping occurs at surface O site and has a smaller defect formation energy than the bulk N-doped BaO. The magnetism of N-doped BaO is also compared with Co-doped BaO, and we believe that N has a greater potential for tuning magnetism in BaO than Co.
Thermal ammonolysis of quasi-two-dimensional (quasi-2D) CoTa2O6 yields the O2-/N3- and anionic vacancy ordered Co2+Ta5+2O6-xN2x/3$Box$x/3 (x $leq$ 0.15) that exhibits a transition from antiferromagnetism to defect engineered above room-temperature ferromagnetism as evidenced by diffraction, spectroscopic and magnetic characterizations. First-principles calculations reveal the origin of ferromagnetism is a particular CoON configuration with N located at Wyckoff position 8j, which breaks mirror symmetry about ab plane. A pressure-induced electronic phase transition is also predicted at around 24.5 GPa, accompanied by insulator-to-metal transition and magnetic moment vanishing.
145 - A. Ahad , M. S. Bahramy 2021
Transition metals, Fe, Co and Ni, are the canonical systems for studying the effect of external perturbations on ferromagnetism. Among these, Ni stands out as it undergoes no structural phase transition under pressure. Here we have investigated the long-debated issue of pressure-induced magnetisation drop in Ni from first-principles. Our calculations confirm an abrupt quenching of magnetisation at high pressures, not associated with any structural phase transition. We find that the pressure substantially enhances the crystal field splitting of Ni-$3d$ orbitals, driving the system towards a new metallic phase violating the Stoner Criterion for ferromagnetic ordering. Analysing the charge populations in each spin channel, we show that the next nearest neighbour interactions play a crucial role in quenching ferromagnetic ordering in Ni and materials alike.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا