Do you want to publish a course? Click here

Recalling Holistic Information for Semantic Segmentation

153   0   0.0 ( 0 )
 Added by Hexiang Hu
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Semantic segmentation requires a detailed labeling of image pixels by object category. Information derived from local image patches is necessary to describe the detailed shape of individual objects. However, this information is ambiguous and can result in noisy labels. Global inference of image content can instead capture the general semantic concepts present. We advocate that high-recall holistic inference of image concepts provides valuable information for detailed pixel labeling. We build a two-stream neural network architecture that facilitates information flow from holistic information to local pixels, while keeping common image features shared among the low-level layers of both the holistic analysis and segmentation branches. We empirically evaluate our network on four standard semantic segmentation datasets. Our network obtains state-of-the-art performance on PASCAL-Context and NYUDv2, and ablation studies verify its effectiveness on ADE20K and SIFT-Flow.

rate research

Read More

This paper studies the context aggregation problem in semantic image segmentation. The existing researches focus on improving the pixel representations by aggregating the contextual information within individual images. Though impressive, these methods neglect the significance of the representations of the pixels of the corresponding class beyond the input image. To address this, this paper proposes to mine the contextual information beyond individual images to further augment the pixel representations. We first set up a feature memory module, which is updated dynamically during training, to store the dataset-level representations of various categories. Then, we learn class probability distribution of each pixel representation under the supervision of the ground-truth segmentation. At last, the representation of each pixel is augmented by aggregating the dataset-level representations based on the corresponding class probability distribution. Furthermore, by utilizing the stored dataset-level representations, we also propose a representation consistent learning strategy to make the classification head better address intra-class compactness and inter-class dispersion. The proposed method could be effortlessly incorporated into existing segmentation frameworks (e.g., FCN, PSPNet, OCRNet and DeepLabV3) and brings consistent performance improvements. Mining contextual information beyond image allows us to report state-of-the-art performance on various benchmarks: ADE20K, LIP, Cityscapes and COCO-Stuff.
297 - Yawei Luo , Ping Liu , Tao Guan 2019
For unsupervised domain adaptation problems, the strategy of aligning the two domains in latent feature space through adversarial learning has achieved much progress in image classification, but usually fails in semantic segmentation tasks in which the latent representations are overcomplex. In this work, we equip the adversarial network with a significance-aware information bottleneck (SIB), to address the above problem. The new network structure, called SIBAN, enables a significance-aware feature purification before the adversarial adaptation, which eases the feature alignment and stabilizes the adversarial training course. In two domain adaptation tasks, i.e., GTA5 -> Cityscapes and SYNTHIA -> Cityscapes, we validate that the proposed method can yield leading results compared with other feature-space alternatives. Moreover, SIBAN can even match the state-of-the-art output-space methods in segmentation accuracy, while the latter are often considered to be better choices for domain adaptive segmentation task.
Monocular depth estimation and semantic segmentation are two fundamental goals of scene understanding. Due to the advantages of task interaction, many works study the joint task learning algorithm. However, most existing methods fail to fully leverage the semantic labels, ignoring the provided context structures and only using them to supervise the prediction of segmentation split, which limit the performance of both tasks. In this paper, we propose a network injected with contextual information (CI-Net) to solve the problem. Specifically, we introduce self-attention block in the encoder to generate attention map. With supervision from the ideal attention map created by semantic label, the network is embedded with contextual information so that it could understand scene better and utilize correlated features to make accurate prediction. Besides, a feature sharing module is constructed to make the task-specific features deeply fused and a consistency loss is devised to make the features mutually guided. We evaluate the proposed CI-Net on the NYU-Depth-v2 and SUN-RGBD datasets. The experimental results validate that our proposed CI-Net could effectively improve the accuracy of semantic segmentation and depth estimation.
Unlike conventional zero-shot classification, zero-shot semantic segmentation predicts a class label at the pixel level instead of the image level. When solving zero-shot semantic segmentation problems, the need for pixel-level prediction with surrounding context motivates us to incorporate spatial information using positional encoding. We improve standard positional encoding by introducing the concept of Relative Positional Encoding, which integrates spatial information at the feature level and can handle arbitrary image sizes. Furthermore, while self-training is widely used in zero-shot semantic segmentation to generate pseudo-labels, we propose a new knowledge-distillation-inspired self-training strategy, namely Annealed Self-Training, which can automatically assign different importance to pseudo-labels to improve performance. We systematically study the proposed Relative Positional Encoding and Annealed Self-Training in a comprehensive experimental evaluation, and our empirical results confirm the effectiveness of our method on three benchmark datasets.
From a computer science viewpoint, a surgical domain model needs to be a conceptual one incorporating both behavior and data. It should therefore model actors, devices, tools, their complex interactions and data flow. To capture and model these, we take advantage of the latest computer vision methodologies for generating 3D scene graphs from camera views. We then introduce the Multimodal Semantic Scene Graph (MSSG) which aims at providing a unified symbolic, spatiotemporal and semantic representation of surgical procedures. This methodology aims at modeling the relationship between different components in surgical domain including medical staff, imaging systems, and surgical devices, opening the path towards holistic understanding and modeling of surgical procedures. We then use MSSG to introduce a dynamically generated graphical user interface tool for surgical procedure analysis which could be used for many applications including process optimization, OR design and automatic report generation. We finally demonstrate that the proposed MSSGs could also be used for synchronizing different complex surgical procedures. While the system still needs to be integrated into real operating rooms before getting validated, this conference paper aims mainly at providing the community with the basic principles of this novel concept through a first prototypal partial realization based on MVOR dataset.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا