Do you want to publish a course? Click here

Anyon condensation and a generic tensor-network construction for symmetry protected topological phases

139   0   0.0 ( 0 )
 Added by Shenghan Jiang
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present systematic constructions of tensor-network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries. From the classification point of view, our results show that in spatial dimensions $d=1,2,3$, the cohomological bosonic SPT phases protected by a general symmetry group $SG$ involving onsite and spatial symmetries are classified by the cohomology group $H^{d+1}(SG,U(1))$, in which both the time-reversal symmetry and mirror reflection symmetries should be treated as anti-unitary operations. In addition, for every SPT phase protected by a discrete symmetry group and some SPT phases protected by continous symmetry groups, generic tensor-network wavefunctions can be constructed which would be useful for the purpose of variational numerical simulations. As a by-product, our results demonstrate a generic connection between rather conventional symmetry enriched topological phases and SPT phases via an anyon condensation mechanism.



rate research

Read More

Although the mathematics of anyon condensation in topological phases has been studied intensively in recent years, a proof of its physical existence is tantamount to constructing an effective Hamiltonian theory. In this paper, we concretely establish the physical foundation of anyon condensation by building the effective Hamiltonian and the Hilbert space, in which we explicitly construct the vacuum of the condensed phase as the coherent states that are the eigenstates of the creation operators that create the condensate anyons. Along with this construction, which is analogous to Laughlins construction of wavefunctions of fractional quantum hall states, we generalize the Goldstone theorem in the usual spontaneous symmetry breaking paradigm to the case of anyon condensation. We then prove that the condensed phase is a symmetry enriched (protected) topological phase by directly constructing the corresponding symmetry transformations, which can be considered as a generalization of the Bogoliubov transformation.
The classification and lattice model construction of symmetry protected topological (SPT) phases in interacting fermion systems are very interesting but challenging. In this paper, we give a systematic fixed point wave function construction of fermionic SPT (FSPT) states for generic fermionic symmetry group $G_f=mathbb{Z}_2^f times_{omega_2} G_b$ which is a central extension of bosonic symmetry group $G_b$ (may contain time reversal symmetry) by the fermion parity symmetry group $mathbb{Z}_2^f = {1,P_f}$. Our construction is based on the concept of equivalence class of finite depth fermionic symmetric local unitary (FSLU) transformations and decorating symmetry domain wall picture, subjected to certain obstructions. We will also discuss the systematical construction and classification of boundary anomalous SPT (ASPT) states which leads to a trivialization of the corresponding bulk FSPT states. Thus, we conjecture that the obstruction-free and trivialization-free constructions naturally lead to a classification of FSPT phases. Each fixed-point wave function admits an exactly solvable commuting-projector Hamiltonian. We believe that our classification scheme can be generalized to point/space group symmetry as well as continuum Lie group symmetry.
94 - Thorsten B. Wahl 2017
We prove that all eigenstates of many-body localized symmetry protected topological systems with time reversal symmetry have four-fold degenerate entanglement spectra in the thermodynamic limit. To that end, we employ unitary quantum circuits where the number of sites the gates act on grows linearly with the system size. We find that the corresponding matrix product operator representation has similar local symmetries as matrix product ground states of symmetry protected topological phases. Those local symmetries give rise to a $mathbb{Z}_2$ topological index, which is robust against arbitrary perturbations so long as they do not break time reversal symmetry or drive the system out of the fully many-body localized phase.
122 - Meng Cheng , Chenjie Wang 2018
We study classification of interacting fermionic symmetry-protected topological (SPT) phases with both rotation symmetry and Abelian internal symmetries in one, two, and three dimensions. By working out this classification, on the one hand, we demonstrate the recently proposed correspondence principle between crystalline topological phases and those with internal symmetries through explicit block-state constructions. We find that for the precise correspondence to hold it is necessary to change the central extension structure of the symmetry group by the $mathbb{Z}_2$ fermion parity. On the other hand, we uncover new classes of intrinsically fermionic SPT phases that are only enabled by interactions, both in 2D and 3D with four-fold rotation. Moreover, several new instances of Lieb-Schultz-Mattis-type theorems for Majorana-type fermionic SPTs are obtained and we discuss their interpretations from the perspective of bulk-boundary correspondence.
The construction and classification of symmetry-protected topological (SPT) phases in interacting bosonic and fermionic systems have been intensively studied in the past few years. Very recently, a complete classification and construction of space group SPT phases were also proposed for interacting bosonic systems. In this paper, we attempt to generalize this classification and construction scheme systematically into interacting fermion systems. In particular, we construct and classify point group SPT phases for 2D interacting fermion systems via lower-dimensional block-state decorations. We discover several intriguing fermionic SPT states that can only be realized in interacting fermion systems (i.e., not in free-fermion or bosonic SPT systems). Moreover, we also verify the recently conjectured crystalline equivalence principle for 2D interacting fermion systems. Finally, the potential experimental realization of these new classes of point group SPT phases in 2D correlated superconductors is addressed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا