No Arabic abstract
Filaments in Herschel molecular cloud images are found to exhibit a characteristic width. This finding is in tension with spatial power spectra of the data, which show no indication of this characteristic scale. We demonstrate that this discrepancy is a result of the methodology adopted for measuring filament widths. First, we perform the previously used analysis technique on artificial scale-free data, and obtain a peaked width distribution of filament-like structures. Next, we repeat the analysis on three Herschel maps and reproduce the narrow distribution of widths found in previous studies $-$ when considering the average width of each filament. However, the distribution of widths measured at all points along a filament spine is broader than the distribution of mean filament widths, indicating that the narrow spread (interpreted as a characteristic width) results from averaging. Furthermore, the width is found to vary significantly from one end of a filament to the other. Therefore, the previously identified peak at 0.1 pc cannot be understood as representing the typical width of filaments. We find an alternative explanation by modelling the observed width distribution as a truncated power-law distribution, sampled with uncertainties. The position of the peak is connected to the lower truncation scale and is likely set by the choice of parameters used in measuring filament widths. We conclude that a characteristic width of filaments is not supported by the available data.
The fragmentation of filaments in molecular clouds has attracted a lot of attention as there seems to be a relation between the evolution of filaments and star formation. The study of the fragmentation process has been motivated by simple analytical models. However, only a few comprehensive studies have analysed the evolution of filaments using numerical simulations where the filaments form self-consistently as part of molecular clouds. We address the early evolution of pc-scale filaments that form within individual clouds. We focus on three questions: How do the line masses of filaments evolve? How and when do the filaments fragment? How does the fragmentation relate to the line masses of the filaments? We examine three simulated molecular clouds formed in kpc-scale numerical simulations performed with the FLASH code. We compare the properties of the identified filaments with the predictions of analytic filament stability models. The line masses and mass fraction enclosed in the identified filaments increase continuously after the onset of self-gravity. The first fragments appear early when the line masses lie well below the critical line mass of Ostrikers hydrostatic equilibrium solution. The average line masses of filaments identified in 3D density cubes increases far more quickly than those identified in 2D column density maps. Our results suggest that hydrostatic or dynamic compression from the surrounding cloud has a significant impact on the early dynamical evolution of filaments. A simple model of an isolated, isothermal cylinder may not provide a good approach for fragmentation analysis. Caution must be exercised in interpreting distributions of properties of filaments identified in column density maps, especially in the case of low-mass filaments. Comparing or combining results from studies that use different filament finding techniques is strongly discouraged.
One core goal of the Kepler mission was to determine the frequency of Earth-like planets that orbit Sun-like stars. Accurately estimating this planet occurrence rate requires both a well-vetted list of planets and a clear understanding of the stars searched for planets. Previous ground-based follow-up observations have, through a variety of methods, sought to improve our knowledge of stars that are known to host planets. Kepler targets without detected planets, however, have not been subjected to the same intensity of follow-up observations. In this paper, we better constrain stellar multiplicity for stars around which Kepler could have theoretically detected a transiting Earth-sized planet in the habitable zone. We subsequently aim to improve estimates of the exoplanet search completeness -- the fraction of exoplanets that were detected by Kepler -- with our analysis. By obtaining adaptive optics observations of 71 Kepler target stars from the Shane 3-m telescope at Lick Observatory, we detected 14 candidate stellar companions within 4 of 13 target stars. Of these 14 candidate stellar companions, we determine through multiple independent methods that 3 are likely to be bound to their corresponding target star. We then assess the impact of our observations on exoplanet occurrence rate calculations, finding an increase in occurrence of 6% (0.9 $sigma$) for various estimates of the frequency of Earth-like planets and an increase of 26% (4.5 $sigma$) for super-Earths and sub-Neptunes. These occurrence increases are not entirely commensurate with theoretical predictions, though this discrepancy may be due to differences in the treatment of stellar binarity.
For many years feedback processes generated by OB-stars in molecular clouds, including expanding ionization fronts, stellar winds, or UV-radiation, have been proposed to trigger subsequent star formation. However, hydrodynamic models including radiation and gravity show that UV-illumination has little or no impact on the global dynamical evolution of the cloud. The Rosette molecular cloud, irradiated by the NGC2244 cluster, is a template region for triggered star-formation, and we investigated its spatial and density structure by applying a curvelet analysis, a filament-tracing algorithm (DisPerSE), and probability density functions (PDFs) on Herschel column density maps, obtained within the HOBYS key program. The analysis reveals not only the filamentary structure of the cloud but also that all known infrared clusters except one lie at junctions of filaments, as predicted by turbulence simulations. The PDFs of sub-regions in the cloud show systematic differences. The two UV-exposed regions have a double-peaked PDF we interprete as caused by shock compression. The deviations of the PDF from the log-normal shape typically associated with low- and high-mass star-forming regions at Av~3-4m and 8-10m, respectively, are found here within the very same cloud. This shows that there is no fundamental difference in the density structure of low- and high-mass star-forming regions. We conclude that star-formation in Rosette - and probably in high-mass star-forming clouds in general - is not globally triggered by the impact of UV-radiation. Moreover, star formation takes place in filaments that arose from the primordial turbulent structure built up during the formation of the cloud. Clusters form at filament mergers, but star formation can be locally induced in the direct interaction zone between an expanding HII--region and the molecular cloud.
We have studied the filaments extracted from the column density maps of the nearby Lupus 1, 3, and 4 molecular clouds, derived from photometric maps observed with the Herschel satellite. Filaments in the Lupus clouds have quite low column densities, with a median value of $sim$1.5$times$10$^{21}$ cm$^{-2}$ and most have masses per unit length lower than the maximum critical value for radial gravitational collapse. Indeed, no evidence of filament contraction has been seen in the gas kinematics. We find that some filaments, that on average are thermally subcritical, contain dense cores that may eventually form stars. This is an indication that in the low column density regime, the critical condition for the formation of stars may be reached only locally and this condition is not a global property of the filament. Finally, in Lupus we find multiple observational evidences of the key role that the magnetic field plays in forming filaments, and determining their confinement and dynamical evolution.
We report on the filaments that develop self-consistently in a new numerical simulation of cloud formation by colliding flows. As in previous studies, the forming cloud begins to undergo gravitational collapse because it rapidly acquires a mass much larger than the average Jeans mass. Thus, the collapse soon becomes nearly pressureless, proceeding along its shortest dimension first. This naturally produces filaments in the cloud, and clumps within the filaments. The filaments are not in equilibrium at any time, but instead are long-lived flow features, through which the gas flows from the cloud to the clumps. The filaments are long-lived because they accrete from their environment while simultaneously accreting onto the clumps within them; they are essentially the locus where the flow changes from accreting in two dimensions to accreting in one dimension. Moreover, the clumps also exhibit a hierarchical nature: the gas in a filament flows onto a main, central clump, but other, smaller-scale clumps form along the infalling gas. Correspondingly, the velocity along the filament exhibits a hierarchy of jumps at the locations of the clumps. Two prominent filaments in the simulation have lengths ~15 pc, and masses ~600 Msun above density n ~ 10^3 cm-3 (~2x10^3 Msun at n > 50 cm-3). The density profile exhibits a central flattened core of size ~0.3 pc and an envelope that decays as r^-2.5, in reasonable agreement with observations. Accretion onto the filament reaches a maximum linear density rate of ~30 Msun Myr^-1 pc^-1.