Do you want to publish a course? Click here

Filaments in the Lupus molecular clouds

124   0   0.0 ( 0 )
 Added by Milena Benedettini
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have studied the filaments extracted from the column density maps of the nearby Lupus 1, 3, and 4 molecular clouds, derived from photometric maps observed with the Herschel satellite. Filaments in the Lupus clouds have quite low column densities, with a median value of $sim$1.5$times$10$^{21}$ cm$^{-2}$ and most have masses per unit length lower than the maximum critical value for radial gravitational collapse. Indeed, no evidence of filament contraction has been seen in the gas kinematics. We find that some filaments, that on average are thermally subcritical, contain dense cores that may eventually form stars. This is an indication that in the low column density regime, the critical condition for the formation of stars may be reached only locally and this condition is not a global property of the filament. Finally, in Lupus we find multiple observational evidences of the key role that the magnetic field plays in forming filaments, and determining their confinement and dynamical evolution.



rate research

Read More

The dominant mechanism leading to the formation of brown dwarfs (BDs) remains uncertain. The most direct keys to formation, which are obtained from younger objects (pre-BD cores and proto-BDs), are limited by the very low number statistics available. We aim to identify and characterize a set of pre- and proto-BDs as well as Class II BDs in the Lupus 1 and 3 molecular clouds to test their formation mechanism. We performed ALMA band 6 (1.3 mm) continuum observations of a selection of 64 cores previously identified from AzTEC/ASTE data (1.1 mm), along with previously known Class II BDs in the Lupus 1 and 3 molecular clouds. Surveyed archival data in the optical were used to complement these observations. We expect these ALMA observations prove efficient in detecting the youngest sources in these regions, since they probe the frequency domain at which these sources emit most of their radiation. We detected 19 sources from 15 ALMA fields. Considering all the pointings in our observing setup, the ALMA detection rate was $sim$23% and the derived masses of the detected sources were between $sim$0.18 and 124 $mathrm{M_{Jup}}$. We classified these sources according to their spectral energy distribution as 5 Class II sources, 2 new Class I/0 candidats, and 12 new possible pre-BD or deeply embedded protostellar candidates. We detected a promising candidate for a Class 0/I proto-BD source and inferred the disk dust mass of a bona fide Class II BD. The pre-BD cores might be the byproduct of an ongoing process of large-scale collapse. The Class II BD disks follow the correlation between disk mass and the mass of the central object that is observed at the low-mass stellar regime. We conclude that it is highly probable that the sources in the sample are formed as a scaled-down version of low-mass star formation, although disk fragmentation may be responsible for a considerable fraction of BDs.
136 - N. F. H. Tothill 2009
Fully sampled degree-scale maps of the 13CO 2-1 and CO 4-3 transitions toward three members of the Lupus Molecular Cloud Complex - Lupus I, III, and IV - trace the column density and temperature of the molecular gas. Comparison with IR extinction maps from the c2d project requires most of the gas to have a temperature of 8-10 K. Estimates of the cloud mass from 13CO emission are roughly consistent with most previous estimates, while the line widths are higher, around 2 km/s. CO 4-3 emission is found throughout Lupus I, indicating widespread dense gas, and toward Lupus III and IV. Enhanced line widths at the NW end and along the edge of the B228 ridge in Lupus I, and a coherent velocity gradient across the ridge, are consistent with interaction between the molecular cloud and an expanding HI shell from the Upper-Scorpius subgroup of the Sco-Cen OB Association. Lupus III is dominated by the effects of two HAe/Be stars, and shows no sign of external influence. Slightly warmer gas around the core of Lupus IV and a low line width suggest heating by the Upper-Centaurus-Lupus subgroup of Sco-Cen, without the effects of an HI shell.
The fragmentation of filaments in molecular clouds has attracted a lot of attention as there seems to be a relation between the evolution of filaments and star formation. The study of the fragmentation process has been motivated by simple analytical models. However, only a few comprehensive studies have analysed the evolution of filaments using numerical simulations where the filaments form self-consistently as part of molecular clouds. We address the early evolution of pc-scale filaments that form within individual clouds. We focus on three questions: How do the line masses of filaments evolve? How and when do the filaments fragment? How does the fragmentation relate to the line masses of the filaments? We examine three simulated molecular clouds formed in kpc-scale numerical simulations performed with the FLASH code. We compare the properties of the identified filaments with the predictions of analytic filament stability models. The line masses and mass fraction enclosed in the identified filaments increase continuously after the onset of self-gravity. The first fragments appear early when the line masses lie well below the critical line mass of Ostrikers hydrostatic equilibrium solution. The average line masses of filaments identified in 3D density cubes increases far more quickly than those identified in 2D column density maps. Our results suggest that hydrostatic or dynamic compression from the surrounding cloud has a significant impact on the early dynamical evolution of filaments. A simple model of an isolated, isothermal cylinder may not provide a good approach for fragmentation analysis. Caution must be exercised in interpreting distributions of properties of filaments identified in column density maps, especially in the case of low-mass filaments. Comparing or combining results from studies that use different filament finding techniques is strongly discouraged.
105 - L. Colzi , O. Sipila , E. Roueff 2020
C-fractionation has been studied from a theoretical point of view with different models of time-dependent chemistry, including both isotope-selective photodissociation and low-temperature isotopic exchange reactions. Recent chemical models predict that the latter may lead to a depletion of $^{13}$C in nitrile-bearing species, with $^{12}$C/$^{13}$C ratios two times higher than the elemental abundance ratio of 68 in the local ISM. Since the carbon isotopic ratio is commonly used to evaluate the $^{14}$N/$^{15}$N ratios with the double-isotope method, it is important to study C-fractionation in detail to avoid incorrect assumptions. In this work we implemented a gas-grain chemical model with new isotopic exchange reactions and investigated their introduction in the context of dense and cold molecular gas. In particular, we investigated the $^{12}$C/$^{13}$C ratios of HNC, HCN, and CN using a grid of models, with temperatures and densities ranging from 10 to 50 K and 2$times$10$^{3}$ to 2$times$10$^{7}$ cm$^{-3}$, respectively. We suggest a possible $^{13}$C exchange through the $^{13}$C + C$_{3}$ $rightarrow$ $^{12}$C +$^{13}$CC$_{2}$ reaction, which does not result in dilution, but rather in $^{13}$C enhancement, for molecules formed starting from atomic carbon. This effect is efficient in a range of time between the formation of CO and its freeze-out on grains. Furthermore, we show that the $^{12}$C/$^{13}$C ratios of nitriles are predicted to be a factor 0.8-1.9 different from the local value of 68 for massive star-forming regions. This result also affects the $^{14}$N/$^{15}$N ratio: a value of 330 obtained with the double-isotope method is predicted to be 260-1150, depending on the physical conditions. Finally, we studied the $^{12}$C/$^{13}$C ratios by varying the cosmic-ray ionization rate: the ratios increase with it because of secondary photons and cosmic-ray reactions.
96 - Paolo Padoan 2017
The magnetic field of molecular clouds (MCs) plays an important role in the process of star formation: it determins the statistical properties of supersonic turbulence that controls the fragmentation of MCs, controls the angular momentum transport during the protostellar collapse, and affects the stability of circumstellar disks. In this work, we focus on the problem of the determination of the magnetic field strength. We review the idea that the MC turbulence is super-Alfv{e}nic, and we argue that MCs are bound to be born super-Alfv{e}nic. We show that this scenario is supported by results from a recent simulation of supernova-driven turbulence on a scale of 250 pc, where the turbulent cascade is resolved on a wide range of scales, including the interior of MCs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا