No Arabic abstract
We apply conformal field theory analysis to the $k$-channel SU($N$) Kondo system, and find a peculiar behavior in the cases $N > k > 1$, which we call Fermi/non-Fermi mixing: The low temperature scaling is described as the Fermi liquid, while the zero temperature IR fixed point exhibits the non-Fermi liquid signature. We also show that the Wilson ratio is no longer universal for the cases $N > k > 1$. The deviation from the universal value of the Wilson ratio could be used as an experimental signal of the Fermi/non-Fermi mixing.
Significant effort has been devoted to the study of non-Fermi liquid (NFL) metals: gapless conducting systems that lack a quasiparticle description. One class of NFL metals involves a finite density of fermions interacting with soft order parameter fluctuations near a quantum critical point. The problem has been extensively studied in a large N limit (N corresponding to the number of fermion flavors) where universal behavior can be obtained by solving a set of coupled saddle-point equations. However a remarkable study by S.-S.~Lee revealed the breakdown of such approximations in two spatial dimensions. We show that an alternate approach, in which the fermions belong to the fundamental representation of a global SU(N) flavor symmetry, while the order parameter fields transform under the adjoint representation (a matrix large N theory), yields a tractable large N limit. At low energies, the system consists of an overdamped boson with dynamical exponent $z=3$ coupled to a non-Fermi liquid with self energy $Sigma(omega) sim omega^{2/3}$, consistent with previous studies.
One of the most notorious non-Fermi liquid properties of both archetypal heavy-fermion systems [1-4] and the high-Tc copper oxide superconductors [5] is an electrical resistivity that evolves linearly with temperature, T. In the heavy-fermion superconductor CeCoIn5 [5], this linear behaviour was one of the first indications of the presence of a zero-temperature instability, or quantum critical point. Here, we report the observation of a unique control parameter of T-linear scattering in CeCoIn5, found through systematic chemical substitutions of both magnetic and non-magnetic rare-earth, R, ions into the Ce sub-lattice. We find that the evolution of inelastic scattering in Ce1-xRxCoIn5 is strongly dependent on the f-electron configuration of the R ion, whereas two other key properties -- Cooper-pair breaking and Kondo-lattice coherence -- are not. Thus, T-linear resistivity in CeCoIn5 is intimately related to the nature of incoherent scattering centers in the Kondo lattice, which provides insight into the anomalous scattering rate synonymous with quantum criticality [7].
We report magnetic quantum oscillations measured using torque magnetisation in the Kondo insulator YbB$_{12}$ and discuss the potential origin of the underlying Fermi surface. Observed quantum oscillations as well as complementary quantities such as a finite linear specific heat capacity in YbB$_{12}$ exhibit similarities with the Kondo insulator SmB$_6$, yet also crucial differences. Small heavy Fermi sections are observed in YbB$_{12}$ with similarities to the neighbouring heavy fermion semimetallic Fermi surface, in contrast to large light Fermi surface sections in SmB$_6$ which are more similar to the conduction electron Fermi surface. A rich spectrum of theoretical models is suggested to explain the origin across different Kondo insulating families of a bulk Fermi surface potentially from novel itinerant quasiparticles that couple to magnetic fields, yet do not couple to weak DC electric fields.
We revisit the interplay between superconductivity and quantum criticality when thermal effects from virtual static bosons are included. These contributions, which arise from an effective theory compactified on the thermal circle, strongly affect field-theoretic predictions even at small temperatures. We argue that they are ubiquitous in a wide variety of models of non-Fermi liquid behavior, and generically produce a parametric suppression of superconducting instabilities. We apply these ideas to non-Fermi liquids in $d=2$ space dimensions, obtained by coupling a Fermi surface to a Landau-damped soft boson. Extending previous methods developed for $d=3-epsilon$ dimensions, we determine the dynamics and phase diagram. It features a naked quantum critical point, separated by a continuous infinite order transition from a superconducting phase with strong non-Fermi liquid corrections. We also highlight the relevance of these effects for (numerical) experiments on non-Fermi liquids.
We construct examples of translationally invariant solvable models of strongly-correlated metals, composed of lattices of Sachdev-Ye-Kitaev dots with identical local interactions. These models display crossovers as a function of temperature into regimes with local quantum criticality and marginal-Fermi liquid behavior. In the marginal Fermi liquid regime, the dc resistivity increases linearly with temperature over a broad range of temperatures. By generalizing the form of interactions, we also construct examples of non-Fermi liquids with critical Fermi-surfaces. The self energy has a singular frequency dependence, but lacks momentum dependence, reminiscent of a dynamical mean field theory-like behavior but in dimensions $d<infty$. In the low temperature and strong-coupling limit, a heavy Fermi liquid is formed. The critical Fermi-surface in the non-Fermi liquid regime gives rise to quantum oscillations in the magnetization as a function of an external magnetic field in the absence of quasiparticle excitations. We discuss the implications of these results for local quantum criticality and for fundamental bounds on relaxation rates. Drawing on the lessons from these models, we formulate conjectures on coarse grained descriptions of a class of intermediate scale non-fermi liquid behavior in generic correlated metals.