Do you want to publish a course? Click here

The VIMOS Public Extragalactic Redshift Survey (VIPERS). The matter density and baryon fraction from the galaxy power spectrum at redshift $0.6<z<1.1$

64   0   0.0 ( 0 )
 Added by Stefano Rota
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use the final catalogue of the VIMOS Public Extragalactic Redshift Survey (VIPERS) to measure the power spectrum of the galaxy distribution at high redshift, presenting results that extend beyond $z=1$ for the first time. We apply an FFT technique to four independent sub-volumes comprising a total of $51,728$ galaxies at $0.6<z<1.1$ (out of the nearly $90,000$ included in the whole survey). We concentrate here on the shape of the direction-averaged power spectrum in redshift space, explaining the level of modelling of redshift-space anisotropies and the anisotropic survey window function that are needed to deduce this in a robust fashion. We then use covariance matrices derived from a large ensemble of mock datasets in order to fit the spectral data. The results are well matched by a standard $Lambda$CDM model, with density parameter $Omega_M h =smash{0.227^{+0.063}_{-0.050}}$ and baryon fraction $smash{f_B=Omega_B/Omega_M=0.220^{+0.058}_{-0.072}}$. These inferences from the high-$z$ galaxy distribution are consistent with results from local galaxy surveys, and also with the Cosmic Microwave Background. Thus the $Lambda$CDM model gives a good match to cosmic structure at all redshifts so far accessible to observational study.



rate research

Read More

Aims. Using the VIMOS Public Extragalactic Redshift Survey (VIPERS) we aim to jointly estimate the key parameters that describe the galaxy density field and its spatial correlations in redshift space. Methods. We use the Bayesian formalism to jointly reconstruct the redshift-space galaxy density field, power spectrum, galaxy bias and galaxy luminosity function given the observations and survey selection function. The high-dimensional posterior distribution is explored using the Wiener filter within a Gibbs sampler. We validate the analysis using simulated catalogues and apply it to VIPERS data taking into consideration the inhomogeneous selection function. Results. We present joint constraints on the anisotropic power spectrum as well as the bias and number density of red and blue galaxy classes in luminosity and redshift bins as well as the measurement covariances of these quantities. We find that the inferred galaxy bias and number density parameters are strongly correlated although these are only weakly correlated with the galaxy power spectrum. The power spectrum and redshift-space distortion parameters are in agreement with previous VIPERS results with the value of the growth rate $fsigma_8 = 0.38$ with 18% uncertainty at redshift 0.7.
We investigate the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 0.5<z<1.1, using the first ~55000 redshifts from the VIMOS Public Extragalactic Redshift Survey (VIPERS). We measured the redshift-space two-point correlation functions (2PCF), and the projected correlation function, in samples covering different ranges of B-band absolute magnitudes and stellar masses. We considered both threshold and binned galaxy samples, with median B-band absolute magnitudes -21.6<MB-5log(h)<-19.5 and median stellar masses 9.8<log(M*[Msun/h^2])<10.7. We assessed the real-space clustering in the data from the projected correlation function, which we model as a power law in the range 0.2<r_p[Mpc/h]<20. Finally, we estimated the galaxy bias as a function of luminosity, stellar mass, and redshift, assuming a flat LCDM model to derive the dark matter 2PCF. We provide the best-fit parameters of the power-law model assumed for the real-space 2PCF -- the correlation length and the slope -- as well as the linear bias parameter, as a function of the B-band absolute magnitude, stellar mass, and redshift. We confirm and provide the tightest constraints on the dependence of clustering on luminosity at 0.5<z<1.1. We prove the complexity of comparing the clustering dependence on stellar mass from samples that are originally flux-limited and discuss the possible origin of the observed discrepancies. Overall, our measurements provide stronger constraints on galaxy formation models, which are now required to match, in addition to local observations, the clustering evolution measured by VIPERS galaxies between z=0.5 and z=1.1 for a broad range of luminosities and stellar masses.
214 - A. Cappi , F. Marulli , J. Bel 2015
We investigate the higher-order correlation properties of the VIMOS Public Extragalactic Redshift Survey (VIPERS) to test the hierarchical scaling hypothesis at z~1 and the dependence on galaxy luminosity, stellar mass, and redshift. We also aim to assess deviations from the linearity of galaxy bias independently from a previously performed analysis of our survey (Di Porto et al. 2014). We have measured the count probability distribution function in cells of radii 3 < R < 10 Mpc/h, deriving $sigma_{8g}$, the volume-averaged two-,three-,and four-point correlation functions and the normalized skewness $S_{3g}$ and kurtosis $S_{4g}$ for volume-limited subsamples covering the ranges $-19.5 le M_B(z=1.1)-5log(h) le -21.0$, $9.0 < log(M*/M_{odot} h^{-2}) le 11.0$, $0.5 le z < 1.1$. We have thus performed the first measurement of high-order correlations at z~1 in a spectroscopic redshift survey. Our main results are the following. 1) The hierarchical scaling holds throughout the whole range of scale and z. 2) We do not find a significant dependence of $S_{3g}$ on luminosity (below z=0.9 $S_{3g}$ decreases with luminosity but only at 1{sigma}-level). 3) We do not detect a significant dependence of $S_{3g}$ and $S_{4g}$ on scale, except beyond z~0.9, where the dependence can be explained as a consequence of sample variance. 4) We do not detect an evolution of $S_{3g}$ and $S_{4g}$ with z. 5) The linear bias factor $b=sigma_{8g}/sigma_{8m}$ increases with z, in agreement with previous results. 6) We quantify deviations from the linear bias by means of the Taylor expansion parameter $b_2$. Our results are compatible with a null non-linear bias term, but taking into account other available data we argue that there is evidence for a small non-linear bias term.
We carry out a joint analysis of redshift-space distortions and galaxy-galaxy lensing, with the aim of measuring the growth rate of structure; this is a key quantity for understanding the nature of gravity on cosmological scales and late-time cosmic acceleration. We make use of the final VIPERS redshift survey dataset, which maps a portion of the Universe at a redshift of $z simeq 0.8$, and the lensing data from the CFHTLenS survey over the same area of the sky. We build a consistent theoretical model that combines non-linear galaxy biasing and redshift-space distortion models, and confront it with observations. The two probes are combined in a Bayesian maximum likelihood analysis to determine the growth rate of structure at two redshifts $z=0.6$ and $z=0.86$. We obtain measurements of $fsigma_8(0.6) = 0.48 pm 0.12$ and $fsigma_8(0.86) = 0.48 pm 0.10$. The additional galaxy-galaxylensing constraint alleviates galaxy bias and $sigma_8$ degeneracies, providing direct measurements of $[f(0.6),sigma_8(0.6)] = [0.93 pm 0.22, 0.52 pm 0.06]$ and $f(0.86),sigma_8(0.86)] = [0.99 pm 0.19, 0.48 pm 0.04]$. These measurements are statistically consistent with a Universe where the gravitational interactions can be described by General Relativity, although they are not yet accurate enough to rule out some commonly considered alternatives. Finally, as a complementary test we measure the gravitational slip parameter, $E_G$ , for the first time at $z>0.6$. We find values of $smash{overline{E}_G}(0.6) = 0.16 pm 0.09$ and $smash{overline{E}_G}(0.86) = 0.09 pm 0.07$, when $E_G$ is averaged over scales above $3 h^{-1} rm{Mpc}$. We find that our $E_G$ measurements exhibit slightly lower values than expected for standard relativistic gravity in a {Lambda}CDM background, although the results are consistent within $1-2sigma$.
The VIPERS galaxy survey has measured the clustering of $0.5<z<1.2$ galaxies, enabling a number of measurements of galaxy properties and cosmological redshift-space distortions (RSD). Because the measurements were made using one-pass of the VIMOS instrument on the Very Large Telescope (VLT), the galaxies observed only represent approximately 47% of the parent target sample, with a distribution imprinted with the pattern of the VIMOS slitmask. Correcting for the effect on clustering has previously been achieved using an approximate approach developed using mock catalogues. Pairwise inverse probability (PIP) weighting has recently been proposed by Bianchi & Percival to correct for missing galaxies, and we apply it to mock VIPERS catalogues to show that it accurately corrects the clustering for the VIMOS effects, matching the clustering measured from the observed sample to that of the parent. We then apply PIP-weighting to the VIPERS data, and fit the resulting monopole and quadrupole moments of the galaxy two-point correlation function with respect to the line-of-sight, making measurements of RSD. The results are close to previous measurements, showing that the previous approximate methods used by the VIPERS team are sufficient given the errors obtained on the RSD parameter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا